In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
We applied <em>n</em>-variable conserving nonlinear differential equations (<em>n</em>-CNDEs) to the population data of the 10-year cycles of Canadian lynx (1821-2016) and the snowshoe hare (18...We applied <em>n</em>-variable conserving nonlinear differential equations (<em>n</em>-CNDEs) to the population data of the 10-year cycles of Canadian lynx (1821-2016) and the snowshoe hare (1845-1921). Modeling external effects as perturbations to population dynamics, recovering and restorations from disintegrations (or extinctions), stability and survival strategies are discussed in terms of the conservation law inherent to dynamical interactions among species. The 2-variable conserving nonlinear interaction (2CNIs) is extended to 3, 4, ... <em>n</em>-variable conserving nonlinear interactions (<em>n</em>-CNIs) of species by adjusting minimum unknown parameters. The population cycle of species is a manifestation of conservation laws existing in complicated ecosystems, which is suggested from the CNDE analysis as <em>a standard rhythm</em> of interactions. The ecosystem is a consequence of the long history of nonlinear interactions and evolutions among life-beings and the natural environment, and the population dynamics of an ecosystem are observed as approximate CNIs. Physical analyses of the conserving quantity in nonlinear interactions would help us understand why and how they have developed. The standard rhythm found in nonlinear interactions should be considered as a manifestation of the survival strategy and the survival of the fittest to the balance of biological systems. The CNDEs and nonlinear differential equations with time-dependent coefficients would help find useful physical information on the survival of the fittest and symbiosis in an ecosystem.展开更多
This article reviews the historical development of Chinese civil law since reform and opening up of China and argues that the primary achievement of civil law legislation over the last four decades has been the format...This article reviews the historical development of Chinese civil law since reform and opening up of China and argues that the primary achievement of civil law legislation over the last four decades has been the formation of a comprehensive civil legal system.Today's civil law system in China not only satisfies the institutional requirements for building a market economy but also constructs a legal rights system and establishes fundamental civil law principles,such as individual autonomy,equal protection,good faith,and fairness.In the 40 years since reform and opening up,there have been significant innovations with regard to the specific systems,systemic structures,and fiindamental principles of Chinese civil law.This article summarizes the experiences of China's civil law legislation since reform and opening up and looks ahead to how the anticipated "civil law codification" suitable for the modem era will develop a modem legal code based on China's domestic circumstances.展开更多
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
文摘We applied <em>n</em>-variable conserving nonlinear differential equations (<em>n</em>-CNDEs) to the population data of the 10-year cycles of Canadian lynx (1821-2016) and the snowshoe hare (1845-1921). Modeling external effects as perturbations to population dynamics, recovering and restorations from disintegrations (or extinctions), stability and survival strategies are discussed in terms of the conservation law inherent to dynamical interactions among species. The 2-variable conserving nonlinear interaction (2CNIs) is extended to 3, 4, ... <em>n</em>-variable conserving nonlinear interactions (<em>n</em>-CNIs) of species by adjusting minimum unknown parameters. The population cycle of species is a manifestation of conservation laws existing in complicated ecosystems, which is suggested from the CNDE analysis as <em>a standard rhythm</em> of interactions. The ecosystem is a consequence of the long history of nonlinear interactions and evolutions among life-beings and the natural environment, and the population dynamics of an ecosystem are observed as approximate CNIs. Physical analyses of the conserving quantity in nonlinear interactions would help us understand why and how they have developed. The standard rhythm found in nonlinear interactions should be considered as a manifestation of the survival strategy and the survival of the fittest to the balance of biological systems. The CNDEs and nonlinear differential equations with time-dependent coefficients would help find useful physical information on the survival of the fittest and symbiosis in an ecosystem.
文摘This article reviews the historical development of Chinese civil law since reform and opening up of China and argues that the primary achievement of civil law legislation over the last four decades has been the formation of a comprehensive civil legal system.Today's civil law system in China not only satisfies the institutional requirements for building a market economy but also constructs a legal rights system and establishes fundamental civil law principles,such as individual autonomy,equal protection,good faith,and fairness.In the 40 years since reform and opening up,there have been significant innovations with regard to the specific systems,systemic structures,and fiindamental principles of Chinese civil law.This article summarizes the experiences of China's civil law legislation since reform and opening up and looks ahead to how the anticipated "civil law codification" suitable for the modem era will develop a modem legal code based on China's domestic circumstances.