The thermal decoherence of harmonic oscillators is investigated here.The quantum system presented here is a one-dimensional oscillator with angular frequency,which is surrounded by a thermal bath of environmental osci...The thermal decoherence of harmonic oscillators is investigated here.The quantum system presented here is a one-dimensional oscillator with angular frequency,which is surrounded by a thermal bath of environmental oscillators.There are various environmental oscillators with different angular frequency(below an ultraviolet cutoff).At the beginning,the quantum system is a pure state and the environmental oscillators are in thermodynamic equilibrium with temperature.After a period,the system-environment interactions inspire significant decoherence of the quantum state.Such decoherence is displayed by explicit calculations of the purity and von Neumann entropy of the quantum system.It is worth noting that the decoherence could be significant even in the weak coupling and low temperature case due to the large amount of environmental degrees of freedom.Since the decoherence process is inspired between the quantum system and an ordinary thermal environment here,the thermal decoherence result is quite general.展开更多
The REAgSb_(2)(RE = rare earth and Y) family has drawn considerable research interest because the two-dimensional Sb net in their crystal structures hosts topological fermions and hence rich topological properties. We...The REAgSb_(2)(RE = rare earth and Y) family has drawn considerable research interest because the two-dimensional Sb net in their crystal structures hosts topological fermions and hence rich topological properties. We report herein the magnetization and magnetotransport measurements of SmAgSb_(2) single crystal, which unveil very large magnetoresistance and high carrier mobility up to 6.2 × 10^(3)% and 5.58 × 10^(3)cm^(2)·V^(-1)·s^(-1), respectively. The analysis of both Shubnikov–de Haas and de Haas–van Alphen quantum oscillations indicates nontrivial Berry phases in the paramagnetic state while trivial Berry curvature in the antiferromagnetic state, indicating a topological phase transition induced by the antiferromagnetic order. It is also supported by the first-principles calculations. The results not only provide a new interesting topological material but also offer valuable insights into the correlation between magnetism and nontrivial topological states.展开更多
We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harm...We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential param- eter, magnetic field strength, AB flux field, and magnetic quantum number by means of the Nikiforov Uvarov (NU) method. The non-relativistic limit, PHO, and harmonic oscillator solutions in the existence and absence of external fields are also obtained.展开更多
This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coh...This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.展开更多
In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex twosphere with second-order constants of motion. We show that these constants of motion satisfy the deformed o...In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex twosphere with second-order constants of motion. We show that these constants of motion satisfy the deformed oscillator algebra. Then, we easily calculate the energy eigenvalues in an algebraic way by solving of a system of two equations satisfied by its structure function. The results are in agreement to the ones obtained from the solution of the relevant Schroedinger equation.展开更多
A turn control strategy is proposed in order to improve environmental adaptability of a quasi-passive walking robot by utilizing a mechanical oscillator. The target trajectory of the fmechanical oscillator is determin...A turn control strategy is proposed in order to improve environmental adaptability of a quasi-passive walking robot by utilizing a mechanical oscillator. The target trajectory of the fmechanical oscillator is determined by online planning of its period, phase, amplitude and angle of the central axis of oscillation. The motion of the mechanical oscillator is always entrained with the rocking motion of the robot based on forced entrainment in order to stabilize the robot. The turn radius can be controlled by adjusting the inclination angle of the central axis of the mechanical oscillator movement, and the control method is numerically and experimentally examined. Results show that the robot can turn with different radius and it is possible for the robot to walk in various environments. Finally, the gait of turn is compared with that of straight walking and analyzed in terms of mechanical work and energy.展开更多
Specific modifications of the usual canonical commutation relations between position and momentumoperators have been proposed in the literature in order to implement the idea of the existence of a minimal observablele...Specific modifications of the usual canonical commutation relations between position and momentumoperators have been proposed in the literature in order to implement the idea of the existence of a minimal observablelength. Here, we study a consequence of this proposal in relativistic quantum mechanics by solving in the momentumspace representation the Klein-Gordon oscillator in arbitrary dimensions. The exact bound states spectrum and thecorresponding momentum space wave function are obtained. Following Chang et al. (Phys. Rev. D 65 (2002) 125027),we discuss constraint that can be placed on the minimal length by measuring the energy levels of an electron in a penningtrap.展开更多
The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial alge...The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial algebra with different highest orders.展开更多
We study a two-dimensional generalized Kemmer oscillator in the cosmic string spacetime with the magnetic field to better understand the contribution from gravitational field caused by topology defects,and present the...We study a two-dimensional generalized Kemmer oscillator in the cosmic string spacetime with the magnetic field to better understand the contribution from gravitational field caused by topology defects,and present the exact solutions to the generalized Kemmer equation in the cosmic string with the Morse potential and Coulomb-liked potential through using the Nikiforov-Uvarov(NU)method and biconfluent Heun equation method,respectively.Our results give the topological defect’s correction for the wave function,energy spectrum and motion equation,and show that the energy levels of the generalized Kemmer oscillator rely on the angular deficitαconnected with the linear mass density m of the cosmic string and characterized the metric’s structure in the cosmic string spacetime.展开更多
This paper deals with the some oscillation criteria for the two dimensional difference system of the form: . Examples illustrating the results are inserted.
Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes m...Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.展开更多
In order to optimize the conditions for residual stress measurement using a two-dimensional X-ray diffraction (2D-XRD) in terms of both efficiency and accuracy. The measurements have been conducted on three stainless ...In order to optimize the conditions for residual stress measurement using a two-dimensional X-ray diffraction (2D-XRD) in terms of both efficiency and accuracy. The measurements have been conducted on three stainless steel specimens in this study. The three specimens were processed by annealing, a cavitating jet in air and a disc grinder, with each method introducing different residual stresses at the surface. The specimens were oscillated in the ω-direction, representing a right-hand rotation of the specimen about the incident X-ray beam. The range of the oscillation, Δω, was varied and optimum Δω was determined. Moreover, combinations of the tilt angle between the specimen surface normal and the diffraction vector, ψ, with the rotation angle about its surface normal, f, have been studied with a view to find the most optimum condition. The results show that the use of ω oscillations is an effective method for improving analysis accuracy, especially for large grain metals. The standard error rapidly decreased with increasing range of the ω oscillation, especially for the annealed specimen which generated strong diffraction spots due to its large grain size.展开更多
In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogeni...In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogenides through assisted nucleation.The quality of molecular beam epitaxy(MBE)-grown two-dimensional(2D)materials can be greatly enhanced by using sacrificial species deposited simultaneously from an electron beam evaporator during the growth process.This technique notably boosts the nucleation rate of the target epitaxial layer,resulting in large,homogeneous monolayers with improved quasiparticle lifetimes and fostering the development of epitaxial van der Waals heterostructures.Additionally,micrometer-sized silver films have been formed at the air-water interface by directly depositing electrospray-generated silver ions onto an aqueous dispersion of reduced graphene oxide under ambient conditions[2].展开更多
Massive amounts of data are acquired in modern and future information technology industries such as communication,radar,and remote sensing.The presence of large dimensionality and size in these data offers new opportu...Massive amounts of data are acquired in modern and future information technology industries such as communication,radar,and remote sensing.The presence of large dimensionality and size in these data offers new opportunities to enhance the performance of signal processing in such applications and even motivate new ones.However,the curse of dimensionality is always a challenge when processing such high-dimensional signals.In practical tasks,high-dimensional signals need to be acquired,processed,and analyzed with high accuracy,robustness,and computational efficiency.This special section aims to address these challenges,where articles attempt to develop new theories and methods that are best suited to the high dimensional nature of the signals involved,and explore modern and emerging applications in this area.展开更多
A Moirésystem is formed when two periodic structures have a slightly mismatched period,resulting in unusual strongly correlated states in the presence of particle-particle interactions.The periodic structures can...A Moirésystem is formed when two periodic structures have a slightly mismatched period,resulting in unusual strongly correlated states in the presence of particle-particle interactions.The periodic structures can arise from the intrinsic crystalline order and periodic external field.We investigate a one-dimensional Hubbard model with periodic on-site potential of period n_(0),which is commensurate to the lattice constant.For large n_(0),the exact solution demonstrates that there is a midgap flat band with zero energy in the absence of Hubbard interaction.Each Moiréunit cell contributes two zero energy levels to the flat band.In the presence of Hubbard interaction,the midgap physics is demonstrated to be well described by a uniform Hubbard chain in which the effective hopping and on-site interaction strength can be controlled by the amplitude and period of the external field.Numerical simulations are performed to demonstrate the correlated behaviors in the finite-sized Moiré Hubbard system,including the existence of an η-pairing state and bound pair oscillation.This finding provides a method to enhance the correlated effect by a spatially periodic external field.展开更多
We present and discuss the partial oscillation with respect to equilibrium state ofm-dimensional Logistic delay ecologic models, and obtain some simple criteria.
The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order...The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order interactions encoded with simplicial complexes.Previous works have shown that higher-order interactions promote coherent states.However, we uncover the fact that the introduced higher-order couplings can significantly enhance the emergence of the incoherent state.Remarkably, we identify that the chimera states arise as a result of multi-attractors in dynamic states.Importantly, we review that the increasing higher-order interactions can significantly shape the emergent probability of chimera states.All the observed results can be well described in terms of the dimension reduction method.This study is a step forward in highlighting the importance of nonlocal higher-order couplings, which might provide control strategies for the occurrence of spatial-temporal patterns in networked systems.展开更多
This article shows that in spherical polar coordinates, some noncentral separable potentials have super-symmetry and shape invariance in the r and θ dimensions, we choose Hartmann potential and ring-shaped oscillator...This article shows that in spherical polar coordinates, some noncentral separable potentials have super-symmetry and shape invariance in the r and θ dimensions, we choose Hartmann potential and ring-shaped oscillator astwo important examples, thus in principle the energy eigenvalues and energy eigenfunctions of such the potentials in ther and θ dimensions can be obtained by the method of supersymmetric quantum mechanics. Here we use an alternativemethod to get the required results.展开更多
This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The v...This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers.展开更多
Ni-Fe-based oxides are among the most promising catalysts developed to date for the bottleneck oxygen evolution reaction(OER)in water electrolysis.However,understanding and mastering the synergy of Ni and Fe remain ch...Ni-Fe-based oxides are among the most promising catalysts developed to date for the bottleneck oxygen evolution reaction(OER)in water electrolysis.However,understanding and mastering the synergy of Ni and Fe remain challenging.Herein,we report that the synergy between Ni and Fe can be tailored by crystal dimensionality of Ni,Fe-contained Ruddlesden-Popper(RP)-type perovskites(La_(0.125)Sr_(0.875))n+1(Ni_(0.25)Fe_(0.75))nO3n+1(n=1,2,3),where the material with n=3 shows the best OER performance in alkaline media.Soft X-ray absorption spectroscopy spectra before and after OER reveal that the material with n=3 shows enhanced Ni/Fe-O covalency to boost the electron transfer as compared to those with n=1 and n=2.Further experimental investigations demonstrate that the Fe ion is the active site and the Ni ion is the stable site in this system,where such unique synergy reaches the optimum at n=3.Besides,as n increases,the proportion of unstable rock-salt layers accordingly decreases and the leaching of ions(especially Sr^(2+))into the electrolyte is suppressed,which induces a decrease in the leaching of active Fe ions,ultimately leading to enhanced stability.This work provides a new avenue for rational catalyst design through the dimensional strategy.展开更多
文摘The thermal decoherence of harmonic oscillators is investigated here.The quantum system presented here is a one-dimensional oscillator with angular frequency,which is surrounded by a thermal bath of environmental oscillators.There are various environmental oscillators with different angular frequency(below an ultraviolet cutoff).At the beginning,the quantum system is a pure state and the environmental oscillators are in thermodynamic equilibrium with temperature.After a period,the system-environment interactions inspire significant decoherence of the quantum state.Such decoherence is displayed by explicit calculations of the purity and von Neumann entropy of the quantum system.It is worth noting that the decoherence could be significant even in the weak coupling and low temperature case due to the large amount of environmental degrees of freedom.Since the decoherence process is inspired between the quantum system and an ordinary thermal environment here,the thermal decoherence result is quite general.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004405,12334008,and 12374148)the Double First-Class Initiative Fund of Shanghai Tech University+2 种基金the Analytical Instrumentation Center of Shanghai Tech University(Grant No.SPST-AIC10112914)the research fund from the Shanghai Sailing Program(Grant No.23YF1426900)the fund from the National Key R&D Program of China(Grant Nos.2022YFA1402702 and 2021YFA1401600)。
文摘The REAgSb_(2)(RE = rare earth and Y) family has drawn considerable research interest because the two-dimensional Sb net in their crystal structures hosts topological fermions and hence rich topological properties. We report herein the magnetization and magnetotransport measurements of SmAgSb_(2) single crystal, which unveil very large magnetoresistance and high carrier mobility up to 6.2 × 10^(3)% and 5.58 × 10^(3)cm^(2)·V^(-1)·s^(-1), respectively. The analysis of both Shubnikov–de Haas and de Haas–van Alphen quantum oscillations indicates nontrivial Berry phases in the paramagnetic state while trivial Berry curvature in the antiferromagnetic state, indicating a topological phase transition induced by the antiferromagnetic order. It is also supported by the first-principles calculations. The results not only provide a new interesting topological material but also offer valuable insights into the correlation between magnetism and nontrivial topological states.
文摘We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential param- eter, magnetic field strength, AB flux field, and magnetic quantum number by means of the Nikiforov Uvarov (NU) method. The non-relativistic limit, PHO, and harmonic oscillator solutions in the existence and absence of external fields are also obtained.
文摘This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.
文摘In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex twosphere with second-order constants of motion. We show that these constants of motion satisfy the deformed oscillator algebra. Then, we easily calculate the energy eigenvalues in an algebraic way by solving of a system of two equations satisfied by its structure function. The results are in agreement to the ones obtained from the solution of the relevant Schroedinger equation.
文摘A turn control strategy is proposed in order to improve environmental adaptability of a quasi-passive walking robot by utilizing a mechanical oscillator. The target trajectory of the fmechanical oscillator is determined by online planning of its period, phase, amplitude and angle of the central axis of oscillation. The motion of the mechanical oscillator is always entrained with the rocking motion of the robot based on forced entrainment in order to stabilize the robot. The turn radius can be controlled by adjusting the inclination angle of the central axis of the mechanical oscillator movement, and the control method is numerically and experimentally examined. Results show that the robot can turn with different radius and it is possible for the robot to walk in various environments. Finally, the gait of turn is compared with that of straight walking and analyzed in terms of mechanical work and energy.
文摘Specific modifications of the usual canonical commutation relations between position and momentumoperators have been proposed in the literature in order to implement the idea of the existence of a minimal observablelength. Here, we study a consequence of this proposal in relativistic quantum mechanics by solving in the momentumspace representation the Klein-Gordon oscillator in arbitrary dimensions. The exact bound states spectrum and thecorresponding momentum space wave function are obtained. Following Chang et al. (Phys. Rev. D 65 (2002) 125027),we discuss constraint that can be placed on the minimal length by measuring the energy levels of an electron in a penningtrap.
基金Supported by the National Natural Science Foundation of China under Grant No.10975075Program for New Century Excellent Talents in University,and the Project-sponsored 5 by SRF for ROCS,SEM
文摘The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial algebra with different highest orders.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11465006 and 11565009)。
文摘We study a two-dimensional generalized Kemmer oscillator in the cosmic string spacetime with the magnetic field to better understand the contribution from gravitational field caused by topology defects,and present the exact solutions to the generalized Kemmer equation in the cosmic string with the Morse potential and Coulomb-liked potential through using the Nikiforov-Uvarov(NU)method and biconfluent Heun equation method,respectively.Our results give the topological defect’s correction for the wave function,energy spectrum and motion equation,and show that the energy levels of the generalized Kemmer oscillator rely on the angular deficitαconnected with the linear mass density m of the cosmic string and characterized the metric’s structure in the cosmic string spacetime.
文摘This paper deals with the some oscillation criteria for the two dimensional difference system of the form: . Examples illustrating the results are inserted.
文摘Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.
文摘In order to optimize the conditions for residual stress measurement using a two-dimensional X-ray diffraction (2D-XRD) in terms of both efficiency and accuracy. The measurements have been conducted on three stainless steel specimens in this study. The three specimens were processed by annealing, a cavitating jet in air and a disc grinder, with each method introducing different residual stresses at the surface. The specimens were oscillated in the ω-direction, representing a right-hand rotation of the specimen about the incident X-ray beam. The range of the oscillation, Δω, was varied and optimum Δω was determined. Moreover, combinations of the tilt angle between the specimen surface normal and the diffraction vector, ψ, with the rotation angle about its surface normal, f, have been studied with a view to find the most optimum condition. The results show that the use of ω oscillations is an effective method for improving analysis accuracy, especially for large grain metals. The standard error rapidly decreased with increasing range of the ω oscillation, especially for the annealed specimen which generated strong diffraction spots due to its large grain size.
文摘In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogenides through assisted nucleation.The quality of molecular beam epitaxy(MBE)-grown two-dimensional(2D)materials can be greatly enhanced by using sacrificial species deposited simultaneously from an electron beam evaporator during the growth process.This technique notably boosts the nucleation rate of the target epitaxial layer,resulting in large,homogeneous monolayers with improved quasiparticle lifetimes and fostering the development of epitaxial van der Waals heterostructures.Additionally,micrometer-sized silver films have been formed at the air-water interface by directly depositing electrospray-generated silver ions onto an aqueous dispersion of reduced graphene oxide under ambient conditions[2].
文摘Massive amounts of data are acquired in modern and future information technology industries such as communication,radar,and remote sensing.The presence of large dimensionality and size in these data offers new opportunities to enhance the performance of signal processing in such applications and even motivate new ones.However,the curse of dimensionality is always a challenge when processing such high-dimensional signals.In practical tasks,high-dimensional signals need to be acquired,processed,and analyzed with high accuracy,robustness,and computational efficiency.This special section aims to address these challenges,where articles attempt to develop new theories and methods that are best suited to the high dimensional nature of the signals involved,and explore modern and emerging applications in this area.
基金supported by the National Natural Science Foundation of China(Grant Nos.12305026 and 12374461)。
文摘A Moirésystem is formed when two periodic structures have a slightly mismatched period,resulting in unusual strongly correlated states in the presence of particle-particle interactions.The periodic structures can arise from the intrinsic crystalline order and periodic external field.We investigate a one-dimensional Hubbard model with periodic on-site potential of period n_(0),which is commensurate to the lattice constant.For large n_(0),the exact solution demonstrates that there is a midgap flat band with zero energy in the absence of Hubbard interaction.Each Moiréunit cell contributes two zero energy levels to the flat band.In the presence of Hubbard interaction,the midgap physics is demonstrated to be well described by a uniform Hubbard chain in which the effective hopping and on-site interaction strength can be controlled by the amplitude and period of the external field.Numerical simulations are performed to demonstrate the correlated behaviors in the finite-sized Moiré Hubbard system,including the existence of an η-pairing state and bound pair oscillation.This finding provides a method to enhance the correlated effect by a spatially periodic external field.
文摘We present and discuss the partial oscillation with respect to equilibrium state ofm-dimensional Logistic delay ecologic models, and obtain some simple criteria.
基金Project supported by the National Natural Science Foundation of China (Grants Nos.12375031 and 11905068)the Natural Science Foundation of Fujian Province, China (Grant No.2023J01113)the Scientific Research Funds of Huaqiao University (Grant No.ZQN-810)。
文摘The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order interactions encoded with simplicial complexes.Previous works have shown that higher-order interactions promote coherent states.However, we uncover the fact that the introduced higher-order couplings can significantly enhance the emergence of the incoherent state.Remarkably, we identify that the chimera states arise as a result of multi-attractors in dynamic states.Importantly, we review that the increasing higher-order interactions can significantly shape the emergent probability of chimera states.All the observed results can be well described in terms of the dimension reduction method.This study is a step forward in highlighting the importance of nonlocal higher-order couplings, which might provide control strategies for the occurrence of spatial-temporal patterns in networked systems.
文摘This article shows that in spherical polar coordinates, some noncentral separable potentials have super-symmetry and shape invariance in the r and θ dimensions, we choose Hartmann potential and ring-shaped oscillator astwo important examples, thus in principle the energy eigenvalues and energy eigenfunctions of such the potentials in ther and θ dimensions can be obtained by the method of supersymmetric quantum mechanics. Here we use an alternativemethod to get the required results.
基金Project supported by the National Natural Science Foundation of China(No.12262026)the Natural Science Foundation of the Inner Mongolia Autonomous Region of China(No.2021MS01007)+1 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region of China(No.NMGIRT2323)the Fundamental Research Funds for the Central Universities(Nos.2232022G-13,2232023G-13,and 2232024G-13)。
文摘This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2023A1515012878Natural Science Foundation of Anhui Province,Grant/Award Number:2008085ME134+2 种基金Australian Research Council Discovery Projects,Grant/Award Numbers:ARC DP200103315,ARC DP200103332Major Special Science and Technology Project of Anhui Province,Grant/Award Number:202103a07020007Key Research and Development Program of Anhui Province,Grant/Award Number:202104a05020057。
文摘Ni-Fe-based oxides are among the most promising catalysts developed to date for the bottleneck oxygen evolution reaction(OER)in water electrolysis.However,understanding and mastering the synergy of Ni and Fe remain challenging.Herein,we report that the synergy between Ni and Fe can be tailored by crystal dimensionality of Ni,Fe-contained Ruddlesden-Popper(RP)-type perovskites(La_(0.125)Sr_(0.875))n+1(Ni_(0.25)Fe_(0.75))nO3n+1(n=1,2,3),where the material with n=3 shows the best OER performance in alkaline media.Soft X-ray absorption spectroscopy spectra before and after OER reveal that the material with n=3 shows enhanced Ni/Fe-O covalency to boost the electron transfer as compared to those with n=1 and n=2.Further experimental investigations demonstrate that the Fe ion is the active site and the Ni ion is the stable site in this system,where such unique synergy reaches the optimum at n=3.Besides,as n increases,the proportion of unstable rock-salt layers accordingly decreases and the leaching of ions(especially Sr^(2+))into the electrolyte is suppressed,which induces a decrease in the leaching of active Fe ions,ultimately leading to enhanced stability.This work provides a new avenue for rational catalyst design through the dimensional strategy.