The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th...The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.展开更多
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t...Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.展开更多
This research focused on the study of heat and mass transfers in a two-phase stratified turbulent fluid flow in a geothermal pipe with chemical reaction. The derived non-linear partial differential equations governing...This research focused on the study of heat and mass transfers in a two-phase stratified turbulent fluid flow in a geothermal pipe with chemical reaction. The derived non-linear partial differential equations governing the flow were solved using the Finite Difference Method. The effects of various physical parameters on the concentration, skin friction, heat, and mass transfers have been determined. Analysis of the results obtained indicated that the coefficient of skin friction decreased with an increase in Reynolds number and solutal Grasholf number, the rate of heat transfer increased with an increase in Eckert number, Prandtl number, and angle of inclination, and the rate of mass transfer increased with increase in Reynolds number, Chemical reaction parameter and angle of inclination. The findings would be useful to engineers in designing and maintaining geothermal pipelines more effectively.展开更多
文摘The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.
文摘Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.
文摘This research focused on the study of heat and mass transfers in a two-phase stratified turbulent fluid flow in a geothermal pipe with chemical reaction. The derived non-linear partial differential equations governing the flow were solved using the Finite Difference Method. The effects of various physical parameters on the concentration, skin friction, heat, and mass transfers have been determined. Analysis of the results obtained indicated that the coefficient of skin friction decreased with an increase in Reynolds number and solutal Grasholf number, the rate of heat transfer increased with an increase in Eckert number, Prandtl number, and angle of inclination, and the rate of mass transfer increased with increase in Reynolds number, Chemical reaction parameter and angle of inclination. The findings would be useful to engineers in designing and maintaining geothermal pipelines more effectively.