With the rapid development of the economy and industry and the improvement of pollution monitoring,how to accurately predict PM2.5 has become an issue of concern to the government and society.In the field of PM2.5 pol...With the rapid development of the economy and industry and the improvement of pollution monitoring,how to accurately predict PM2.5 has become an issue of concern to the government and society.In the field of PM2.5 pollution forecasting,a series of results have emerged so far.However,in the existing research field of PM2.5 prediction,most studies tend to predict short-term temporal series.Existing studies tend to ignore the temporal and spatial characteristics of PM2.5 transport,which leads to its poor performance in long-term prediction.In this paper,by optimizing previous PM2.5 deep learning prediction models,we propose a model GAT-EGRU.First,we add a spatial modular Graph Attention Network(GAT)and couple an Empirical Modal Decomposition algorithm(EMD),considering the temporal and spatial properties of PM2.5.Then,we use Gated Recurrent Unit(GRU)to filter spatio-temporal features for iterative rolling PM2.5 prediction.The experimental results show that the GAT-EGRU model has more advantages in predicting PM2.5 concentrations,especially for long time steps.This proves that the GAT-EGRU model outperforms other models for PM2.5 forecasting.After that,we verify the effectiveness of each module by distillation experiments.The experimental results show that each model module has an essential role in the final PM2.5 prediction results.The new model improves the ability to predict PM2.5 after a long time accurately and can be used as a practical tool for predicting PM2.5 concentrations.展开更多
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo...One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.展开更多
In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequenc...In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequency components in the band. The results will not define the reservoir well if we calculate correlation dimension directly. In this paper, we present a method that integrates empirical mode decomposition (EMD) and correlation dimension. EMD is used to decompose the seismic waves and calculate the correlation dimension of every intrinsic mode function (IMF) component of the decomposed wave. Comparing the results with reservoirs identified by known wells, the most effective IMF is chosen and used to predict the reservoir. The method is applied in the Triassic Zhongyou group in the XX area of the Tahe oil field with quite good results.展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant Nos.42071273,71671024 and 71874021Fundamental Research Funds for the Central Universities under Grant Nos.DUT20JC38,DUT20RW301 and DUT21YG119.
文摘With the rapid development of the economy and industry and the improvement of pollution monitoring,how to accurately predict PM2.5 has become an issue of concern to the government and society.In the field of PM2.5 pollution forecasting,a series of results have emerged so far.However,in the existing research field of PM2.5 prediction,most studies tend to predict short-term temporal series.Existing studies tend to ignore the temporal and spatial characteristics of PM2.5 transport,which leads to its poor performance in long-term prediction.In this paper,by optimizing previous PM2.5 deep learning prediction models,we propose a model GAT-EGRU.First,we add a spatial modular Graph Attention Network(GAT)and couple an Empirical Modal Decomposition algorithm(EMD),considering the temporal and spatial properties of PM2.5.Then,we use Gated Recurrent Unit(GRU)to filter spatio-temporal features for iterative rolling PM2.5 prediction.The experimental results show that the GAT-EGRU model has more advantages in predicting PM2.5 concentrations,especially for long time steps.This proves that the GAT-EGRU model outperforms other models for PM2.5 forecasting.After that,we verify the effectiveness of each module by distillation experiments.The experimental results show that each model module has an essential role in the final PM2.5 prediction results.The new model improves the ability to predict PM2.5 after a long time accurately and can be used as a practical tool for predicting PM2.5 concentrations.
基金supported by the State Key Program of National Natural Science of China (No. 11232009)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.
基金sponsored by the National Nature Science Foundation of china(Grant No.40774064)National Hi-tech Research and Development Program of China(863 Program)(Grant No.2006AA0AA102-12)
文摘In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequency components in the band. The results will not define the reservoir well if we calculate correlation dimension directly. In this paper, we present a method that integrates empirical mode decomposition (EMD) and correlation dimension. EMD is used to decompose the seismic waves and calculate the correlation dimension of every intrinsic mode function (IMF) component of the decomposed wave. Comparing the results with reservoirs identified by known wells, the most effective IMF is chosen and used to predict the reservoir. The method is applied in the Triassic Zhongyou group in the XX area of the Tahe oil field with quite good results.