BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)pati...BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)patients was limited.AIM To explore the prognostic value of LNR in postoperative gastric NEN patients and to combine LNR to develop prognostic models.METHODS A total of 286 patients from the Surveillance,Epidemiology,and End Results database were divided into the training set and validation set at a ratio of 8:2.92 patients from the First Affiliated Hospital of Soochow University in China were designated as a test set.Cox regression analysis was used to explore the relationship between LNR and disease-specific survival(DSS)of gastric NEN patients.Random survival forest(RSF)algorithm and Cox proportional hazards(CoxPH)analysis were applied to develop models to predict DSS respectively,and compared with the 8th edition American Joint Committee on Cancer(AJCC)tumornode-metastasis(TNM)staging.RESULTS Multivariate analyses indicated that LNR was an independent prognostic factor for postoperative gastric NEN patients and a higher LNR was accompanied by a higher risk of death.The RSF model exhibited the best performance in predicting DSS,with the C-index in the test set being 0.769[95%confidence interval(CI):0.691-0.846]outperforming the CoxPH model(0.744,95%CI:0.665-0.822)and the 8th edition AJCC TNM staging(0.723,95%CI:0.613-0.833).The calibration curves and decision curve analysis(DCA)demonstrated the RSF model had good calibration and clinical benefits.Furthermore,the RSF model could perform risk stratification and individual prognosis prediction effectively.CONCLUSION A higher LNR indicated a lower DSS in postoperative gastric NEN patients.The RSF model outperformed the CoxPH model and the 8th edition AJCC TNM staging in the test set,showing potential in clinical practice.展开更多
BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong t...BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment.展开更多
Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,a...Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,and to explore future interventions.Methods The epidemiological,behavioral,and population census data from multiple sources were analyzed to extract inputs for an acquired immunodeficiency syndrome(AIDS)epidemic model(AEM).Baseline curves,derived from historical trends in HIV prevalence,were used,and the AEM was employed to examine future intervention scenarios.Results In 2015,the modeled data suggested an adult HIV prevalence of 0.191%in Sichuan,with an estimated 128,766 people living with HIV/AIDS and 16,983 individuals with newly diagnosed infections.Considering current high-risk behaviors,the model predicts an increase in the adult prevalence to 0.306%by 2025,projecting an estimated 212,168 people living with HIV/AIDS and 16,555 individuals with newly diagnosed infections.Conclusion Heterosexual transmission will likely emerge as the primary mode of AIDS transmission in Sichuan.Furthermore,we anticipate a stabilization in the incidence of AIDS with a concurrent increase in prevalence.Implementing comprehensive intervention measures aimed at high-risk groups could effectively alleviate the spread of AIDS in Sichuan.展开更多
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate...Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
Since the COVID-19 pandemic began,a plethora of modeling studies relatedto COVID-19 have been released.While some models stand out due to their innovative approaches,others are flawed in their methodology.To assist no...Since the COVID-19 pandemic began,a plethora of modeling studies relatedto COVID-19 have been released.While some models stand out due to their innovative approaches,others are flawed in their methodology.To assist novices,frontline healthcare workers,and public health policymakers in navigating the complex landscape of these models,we introduced a structured framework named MODELS.This framework is designed to detail the essential steps and considerations for creating a dependable epidemic model,offering direction to researchers engaged in epidemic modeling endeavors.展开更多
BACKGROUND Colorectal cancer(CRC)is a significant global health issue,and lymph node metastasis(LNM)is a crucial prognostic factor.Accurate prediction of LNM is essential for developing individualized treatment strate...BACKGROUND Colorectal cancer(CRC)is a significant global health issue,and lymph node metastasis(LNM)is a crucial prognostic factor.Accurate prediction of LNM is essential for developing individualized treatment strategies for patients with CRC.However,the prediction of LNM is challenging and depends on various factors such as tumor histology,clinicopathological features,and molecular characteristics.The most reliable method to detect LNM is the histopathological examination of surgically resected specimens;however,this method is invasive,time-consuming,and subject to sampling errors and interobserver variability.AIM To analyze influencing factors and develop and validate a risk prediction model for LNM in CRC based on a large patient queue.METHODS This study retrospectively analyzed 300 patients who underwent CRC surgery at two Peking University Shenzhen hospitals between January and December 2021.A deep learning approach was used to extract features potentially associated with LNM from primary tumor histological images while a logistic regression model was employed to predict LNM in CRC using machine-learning-derived features and clinicopathological variables as predictors.RESULTS The prediction model constructed for LNM in CRC was based on a logistic regression framework that incorporated machine learning-extracted features and clinicopathological variables.The model achieved high accuracy(0.86),sensitivity(0.81),specificity(0.87),positive predictive value(0.66),negative predictive value(0.94),area under the curve for the receiver operating characteristic(0.91),and a low Brier score(0.10).The model showed good agreement between the observed and predicted probabilities of LNM across a range of risk thresholds,indicating good calibration and clinical utility.CONCLUSION The present study successfully developed and validated a potent and effective risk-prediction model for LNM in patients with CRC.This model utilizes machine-learning-derived features extracted from primary tumor histology and clinicopathological variables,demonstrating superior performance and clinical applicability compared to existing models.The study provides new insights into the potential of deep learning to extract valuable information from tumor histology,in turn,improving the prediction of LNM in CRC and facilitate risk stratification and decision-making in clinical practice.展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still...BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still not optimistic.In China,the incidence of CRC in the Yangtze River Delta region is increasing dramatically,but few studies have been conducted.Therefore,it is necessary to develop a simple and efficient early screening model for CRC.AIM To develop and validate an early-screening nomogram model to identify individuals at high risk of CRC.METHODS Data of 64448 participants obtained from Ningbo Hospital,China between 2014 and 2017 were retrospectively analyzed.The cohort comprised 64448 individuals,of which,530 were excluded due to missing or incorrect data.Of 63918,7607(11.9%)individuals were considered to be high risk for CRC,and 56311(88.1%)were not.The participants were randomly allocated to a training set(44743)or validation set(19175).The discriminatory ability,predictive accuracy,and clinical utility of the model were evaluated by constructing and analyzing receiver operating characteristic(ROC)curves and calibration curves and by decision curve analysis.Finally,the model was validated internally using a bootstrap resampling technique.RESULTS Seven variables,including demographic,lifestyle,and family history information,were examined.Multifactorial logistic regression analysis revealed that age[odds ratio(OR):1.03,95%confidence interval(CI):1.02-1.03,P<0.001],body mass index(BMI)(OR:1.07,95%CI:1.06-1.08,P<0.001),waist circumference(WC)(OR:1.03,95%CI:1.02-1.03 P<0.001),lifestyle(OR:0.45,95%CI:0.42-0.48,P<0.001),and family history(OR:4.28,95%CI:4.04-4.54,P<0.001)were the most significant predictors of high-risk CRC.Healthy lifestyle was a protective factor,whereas family history was the most significant risk factor.The area under the curve was 0.734(95%CI:0.723-0.745)for the final validation set ROC curve and 0.735(95%CI:0.728-0.742)for the training set ROC curve.The calibration curve demonstrated a high correlation between the CRC high-risk population predicted by the nomogram model and the actual CRC high-risk population.CONCLUSION The early-screening nomogram model for CRC prediction in high-risk populations developed in this study based on age,BMI,WC,lifestyle,and family history exhibited high accuracy.展开更多
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
This research presents a reputation-based blockchain consensus mechanism called Proof of Intelligent Reputation(PoIR)as an alternative to traditional Proof of Work(PoW).PoIR addresses the limitations of existing reput...This research presents a reputation-based blockchain consensus mechanism called Proof of Intelligent Reputation(PoIR)as an alternative to traditional Proof of Work(PoW).PoIR addresses the limitations of existing reputationbased consensus mechanisms by proposing a more decentralized and fair node selection process.The proposed PoIR consensus combines Bidirectional Long Short-Term Memory(BiLSTM)with the Network Entity Reputation Database(NERD)to generate reputation scores for network entities and select authoritative nodes.NERD records network entity profiles based on various sources,i.e.,Warden,Blacklists,DShield,AlienVault Open Threat Exchange(OTX),and MISP(Malware Information Sharing Platform).It summarizes these profile records into a reputation score value.The PoIR consensus mechanism utilizes these reputation scores to select authoritative nodes.The evaluation demonstrates that PoIR exhibits higher centralization resistance than PoS and PoW.Authoritative nodes were selected fairly during the 1000-block proposal round,ensuring a more decentralized blockchain ecosystem.In contrast,malicious nodes successfully monopolized 58%and 32%of transaction processes in PoS and PoW,respectively,but failed to do so in PoIR.The findings also indicate that PoIR offers efficient transaction times of 12 s,outperforms reputation-based consensus such as PoW,and is comparable to reputation-based consensus such as PoS.Furthermore,the model evaluation shows that BiLSTM outperforms other Recurrent Neural Network models,i.e.,BiGRU(Bidirectional Gated Recurrent Unit),UniLSTM(Unidirectional Long Short-Term Memory),and UniGRU(Unidirectional Gated Recurrent Unit)with 0.022 Root Mean Squared Error(RMSE).This study concludes that the PoIR consensus mechanism is more resistant to centralization than PoS and PoW.Integrating BiLSTM and NERD enhances the fairness and efficiency of blockchain applications.展开更多
In this work,a novel fluid-structure coupling method called the common node discrete element-smoothed particle hydrodynamics(DS-SPH)method is introduced.This framework combines the principles of the common node discre...In this work,a novel fluid-structure coupling method called the common node discrete element-smoothed particle hydrodynamics(DS-SPH)method is introduced.This framework combines the principles of the common node discrete element method(DEM)and smoothed particle hydrodynamics(SPH)to construct DEM-SPH particles situated on the same node.By doing so,the DEM particles can interact with the SPH particles within their support domain,enabling fluid-structure interaction(FSI).To determine the DEM microscopic parameters required for this method,uniaxial compression and three-point bending tests are conducted on sea ice.To verify the proposed model,we select the interaction between sea ice and structures as a case study.Through simulation,the model's capability of accurately depicting sea ice deformation and fracture has been demonstrated.The results indicate that the inclusion of SPH particles with fluid properties in the DEM model has minimal impact on the main mechanical parameters of sea ice.Additionally,it helps prevent the occurrence of particle splashing during cement failure.However,it is observed that the size of DEM particles and the friction between DEM particles and the structure significantly influence the macroscopic mechanical behavior of the common-node DEM-SPH model.Finally,we compare the fracture behavior of sea ice and the ice forces acting on structures obtained from the current model with on-site measured results.The agreement between the two sets of data is excellent,further validating the effectiveness of the proposed model in practical applications.展开更多
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ...Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
基金Supported by the Science and Technology Plan of Suzhou City,No.SKY2021038.
文摘BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)patients was limited.AIM To explore the prognostic value of LNR in postoperative gastric NEN patients and to combine LNR to develop prognostic models.METHODS A total of 286 patients from the Surveillance,Epidemiology,and End Results database were divided into the training set and validation set at a ratio of 8:2.92 patients from the First Affiliated Hospital of Soochow University in China were designated as a test set.Cox regression analysis was used to explore the relationship between LNR and disease-specific survival(DSS)of gastric NEN patients.Random survival forest(RSF)algorithm and Cox proportional hazards(CoxPH)analysis were applied to develop models to predict DSS respectively,and compared with the 8th edition American Joint Committee on Cancer(AJCC)tumornode-metastasis(TNM)staging.RESULTS Multivariate analyses indicated that LNR was an independent prognostic factor for postoperative gastric NEN patients and a higher LNR was accompanied by a higher risk of death.The RSF model exhibited the best performance in predicting DSS,with the C-index in the test set being 0.769[95%confidence interval(CI):0.691-0.846]outperforming the CoxPH model(0.744,95%CI:0.665-0.822)and the 8th edition AJCC TNM staging(0.723,95%CI:0.613-0.833).The calibration curves and decision curve analysis(DCA)demonstrated the RSF model had good calibration and clinical benefits.Furthermore,the RSF model could perform risk stratification and individual prognosis prediction effectively.CONCLUSION A higher LNR indicated a lower DSS in postoperative gastric NEN patients.The RSF model outperformed the CoxPH model and the 8th edition AJCC TNM staging in the test set,showing potential in clinical practice.
文摘BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment.
基金funded by the Humanities and Social Sciences Research Project of Ministry of Education of China[Grant ID:18YJA840018].
文摘Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,and to explore future interventions.Methods The epidemiological,behavioral,and population census data from multiple sources were analyzed to extract inputs for an acquired immunodeficiency syndrome(AIDS)epidemic model(AEM).Baseline curves,derived from historical trends in HIV prevalence,were used,and the AEM was employed to examine future intervention scenarios.Results In 2015,the modeled data suggested an adult HIV prevalence of 0.191%in Sichuan,with an estimated 128,766 people living with HIV/AIDS and 16,983 individuals with newly diagnosed infections.Considering current high-risk behaviors,the model predicts an increase in the adult prevalence to 0.306%by 2025,projecting an estimated 212,168 people living with HIV/AIDS and 16,555 individuals with newly diagnosed infections.Conclusion Heterosexual transmission will likely emerge as the primary mode of AIDS transmission in Sichuan.Furthermore,we anticipate a stabilization in the incidence of AIDS with a concurrent increase in prevalence.Implementing comprehensive intervention measures aimed at high-risk groups could effectively alleviate the spread of AIDS in Sichuan.
基金financially supported by the National Natural Science Foundation of China(22168019 and 52074141)the Major Science and Technology Projects in Yunnan Province(202202AB080014)+1 种基金The authors are grateful to the National Natural Science Foundation of Chinathe Major Science and Technology Projects in Yunnan Province for their support.
文摘Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金supported by the National Key R&D Program of China(2021YFC2301604)Fundamental Research Funds for the Central Universities(20720230001)the Self-supporting Program of Guangzhou Laboratory(SRPG22-007)
文摘Since the COVID-19 pandemic began,a plethora of modeling studies relatedto COVID-19 have been released.While some models stand out due to their innovative approaches,others are flawed in their methodology.To assist novices,frontline healthcare workers,and public health policymakers in navigating the complex landscape of these models,we introduced a structured framework named MODELS.This framework is designed to detail the essential steps and considerations for creating a dependable epidemic model,offering direction to researchers engaged in epidemic modeling endeavors.
文摘BACKGROUND Colorectal cancer(CRC)is a significant global health issue,and lymph node metastasis(LNM)is a crucial prognostic factor.Accurate prediction of LNM is essential for developing individualized treatment strategies for patients with CRC.However,the prediction of LNM is challenging and depends on various factors such as tumor histology,clinicopathological features,and molecular characteristics.The most reliable method to detect LNM is the histopathological examination of surgically resected specimens;however,this method is invasive,time-consuming,and subject to sampling errors and interobserver variability.AIM To analyze influencing factors and develop and validate a risk prediction model for LNM in CRC based on a large patient queue.METHODS This study retrospectively analyzed 300 patients who underwent CRC surgery at two Peking University Shenzhen hospitals between January and December 2021.A deep learning approach was used to extract features potentially associated with LNM from primary tumor histological images while a logistic regression model was employed to predict LNM in CRC using machine-learning-derived features and clinicopathological variables as predictors.RESULTS The prediction model constructed for LNM in CRC was based on a logistic regression framework that incorporated machine learning-extracted features and clinicopathological variables.The model achieved high accuracy(0.86),sensitivity(0.81),specificity(0.87),positive predictive value(0.66),negative predictive value(0.94),area under the curve for the receiver operating characteristic(0.91),and a low Brier score(0.10).The model showed good agreement between the observed and predicted probabilities of LNM across a range of risk thresholds,indicating good calibration and clinical utility.CONCLUSION The present study successfully developed and validated a potent and effective risk-prediction model for LNM in patients with CRC.This model utilizes machine-learning-derived features extracted from primary tumor histology and clinicopathological variables,demonstrating superior performance and clinical applicability compared to existing models.The study provides new insights into the potential of deep learning to extract valuable information from tumor histology,in turn,improving the prediction of LNM in CRC and facilitate risk stratification and decision-making in clinical practice.
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
基金Supported by the Project of NINGBO Leading Medical Health Discipline,No.2022-B11Ningbo Natural Science Foundation,No.202003N4206Public Welfare Foundation of Ningbo,No.2021S108.
文摘BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still not optimistic.In China,the incidence of CRC in the Yangtze River Delta region is increasing dramatically,but few studies have been conducted.Therefore,it is necessary to develop a simple and efficient early screening model for CRC.AIM To develop and validate an early-screening nomogram model to identify individuals at high risk of CRC.METHODS Data of 64448 participants obtained from Ningbo Hospital,China between 2014 and 2017 were retrospectively analyzed.The cohort comprised 64448 individuals,of which,530 were excluded due to missing or incorrect data.Of 63918,7607(11.9%)individuals were considered to be high risk for CRC,and 56311(88.1%)were not.The participants were randomly allocated to a training set(44743)or validation set(19175).The discriminatory ability,predictive accuracy,and clinical utility of the model were evaluated by constructing and analyzing receiver operating characteristic(ROC)curves and calibration curves and by decision curve analysis.Finally,the model was validated internally using a bootstrap resampling technique.RESULTS Seven variables,including demographic,lifestyle,and family history information,were examined.Multifactorial logistic regression analysis revealed that age[odds ratio(OR):1.03,95%confidence interval(CI):1.02-1.03,P<0.001],body mass index(BMI)(OR:1.07,95%CI:1.06-1.08,P<0.001),waist circumference(WC)(OR:1.03,95%CI:1.02-1.03 P<0.001),lifestyle(OR:0.45,95%CI:0.42-0.48,P<0.001),and family history(OR:4.28,95%CI:4.04-4.54,P<0.001)were the most significant predictors of high-risk CRC.Healthy lifestyle was a protective factor,whereas family history was the most significant risk factor.The area under the curve was 0.734(95%CI:0.723-0.745)for the final validation set ROC curve and 0.735(95%CI:0.728-0.742)for the training set ROC curve.The calibration curve demonstrated a high correlation between the CRC high-risk population predicted by the nomogram model and the actual CRC high-risk population.CONCLUSION The early-screening nomogram model for CRC prediction in high-risk populations developed in this study based on age,BMI,WC,lifestyle,and family history exhibited high accuracy.
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
基金funded by the Ministry of Education,Culture,Research,and Technology(Kemendikbudristek)of Indonesia under PDD Grant with Grant Number NKB1016/UN2.RST/HKP.05.00/2022.
文摘This research presents a reputation-based blockchain consensus mechanism called Proof of Intelligent Reputation(PoIR)as an alternative to traditional Proof of Work(PoW).PoIR addresses the limitations of existing reputationbased consensus mechanisms by proposing a more decentralized and fair node selection process.The proposed PoIR consensus combines Bidirectional Long Short-Term Memory(BiLSTM)with the Network Entity Reputation Database(NERD)to generate reputation scores for network entities and select authoritative nodes.NERD records network entity profiles based on various sources,i.e.,Warden,Blacklists,DShield,AlienVault Open Threat Exchange(OTX),and MISP(Malware Information Sharing Platform).It summarizes these profile records into a reputation score value.The PoIR consensus mechanism utilizes these reputation scores to select authoritative nodes.The evaluation demonstrates that PoIR exhibits higher centralization resistance than PoS and PoW.Authoritative nodes were selected fairly during the 1000-block proposal round,ensuring a more decentralized blockchain ecosystem.In contrast,malicious nodes successfully monopolized 58%and 32%of transaction processes in PoS and PoW,respectively,but failed to do so in PoIR.The findings also indicate that PoIR offers efficient transaction times of 12 s,outperforms reputation-based consensus such as PoW,and is comparable to reputation-based consensus such as PoS.Furthermore,the model evaluation shows that BiLSTM outperforms other Recurrent Neural Network models,i.e.,BiGRU(Bidirectional Gated Recurrent Unit),UniLSTM(Unidirectional Long Short-Term Memory),and UniGRU(Unidirectional Gated Recurrent Unit)with 0.022 Root Mean Squared Error(RMSE).This study concludes that the PoIR consensus mechanism is more resistant to centralization than PoS and PoW.Integrating BiLSTM and NERD enhances the fairness and efficiency of blockchain applications.
基金financially supported by the National Natural Science Foundation of China (Grant No.52201323)。
文摘In this work,a novel fluid-structure coupling method called the common node discrete element-smoothed particle hydrodynamics(DS-SPH)method is introduced.This framework combines the principles of the common node discrete element method(DEM)and smoothed particle hydrodynamics(SPH)to construct DEM-SPH particles situated on the same node.By doing so,the DEM particles can interact with the SPH particles within their support domain,enabling fluid-structure interaction(FSI).To determine the DEM microscopic parameters required for this method,uniaxial compression and three-point bending tests are conducted on sea ice.To verify the proposed model,we select the interaction between sea ice and structures as a case study.Through simulation,the model's capability of accurately depicting sea ice deformation and fracture has been demonstrated.The results indicate that the inclusion of SPH particles with fluid properties in the DEM model has minimal impact on the main mechanical parameters of sea ice.Additionally,it helps prevent the occurrence of particle splashing during cement failure.However,it is observed that the size of DEM particles and the friction between DEM particles and the structure significantly influence the macroscopic mechanical behavior of the common-node DEM-SPH model.Finally,we compare the fracture behavior of sea ice and the ice forces acting on structures obtained from the current model with on-site measured results.The agreement between the two sets of data is excellent,further validating the effectiveness of the proposed model in practical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)and STEP(Grant No.2019QZKK0102)supported by the Korea Environmental Industry&Technology Institute(KEITI)through the“Project for developing an observation-based GHG emissions geospatial information map”,funded by the Korea Ministry of Environment(MOE)(Grant No.RS-2023-00232066).
文摘Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.