Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai...This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.展开更多
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk...Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.展开更多
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t...In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.展开更多
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i...Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.展开更多
The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). I...The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation.展开更多
In this paper,a recurrent neural network(RNN)is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems.The neural network approximates the uncertainties related to unmodeled dynami...In this paper,a recurrent neural network(RNN)is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems.The neural network approximates the uncertainties related to unmodeled dynamics,parametric variations,and external disturbances.The RNN has a single hidden layer and uses the tracking error and the output as feedback to estimate the disturbance.The RNN weights are online adapted,and the adaptation laws are developed from the stability analysis of the controlled system with the RNN estimation.The used activation function,at the hidden layer,has an expression that simplifies the adaptation laws from the stability analysis.It is found that the adaptive RNN enhances the tracking performance of the feedback controller at the transient and steady state responses.The proposed RNN based feedback control is applied to a DC–DC converter for current regulation.Simulation and experimental results are provided to show its effectiveness.Compared to the feedforward neural network and the conventional feedback control,the RNN based feedback control provides good tracking performance.展开更多
Drug-target interactions prediction(DTIP)remains an important requirement in thefield of drug discovery and human medicine.The identification of interaction among the drug compound and target protein plays an essential ...Drug-target interactions prediction(DTIP)remains an important requirement in thefield of drug discovery and human medicine.The identification of interaction among the drug compound and target protein plays an essential pro-cess in the drug discovery process.It is a lengthier and complex process for pre-dicting the drug target interaction(DTI)utilizing experimental approaches.To resolve these issues,computational intelligence based DTIP techniques were developed to offer an efficient predictive model with low cost.The recently devel-oped deep learning(DL)models can be employed for the design of effective pre-dictive approaches for DTIP.With this motivation,this paper presents a new drug target interaction prediction using optimal recurrent neural network(DTIP-ORNN)technique.The goal of the DTIP-ORNN technique is to predict the DTIs in a semi-supervised way,i.e.,inclusion of both labelled and unlabelled instances.Initially,the DTIP-ORNN technique performs data preparation process and also includes class labelling process,where the target interactions from the database are used to determine thefinal label of the unlabelled instances.Besides,drug-to-drug(D-D)and target-to-target(T-T)interactions are used for the weight initia-tion of the RNN based bidirectional long short term memory(BiLSTM)model which is then utilized to the prediction of DTIs.Since hyperparameters signifi-cantly affect the prediction performance of the BiLSTM technique,the Adam optimizer is used which mainly helps to improve the DTI prediction outcomes.In order to ensure the enhanced predictive outcomes of the DTIP-ORNN techni-que,a series of simulations are implemented on four benchmark datasets.The comparative result analysis shows the promising performance of the DTIP-ORNN method on the recent approaches.展开更多
Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal fai...Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal failure,and cardi-ovascular disease,if left untreated.One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test,this procedure involves extracting blood quite frequently,which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring.Exist-ing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems,to overcome these issues,we proposed stacking ensemble learning-based convolutional gated recurrent neural network(CGRNN)Metamodel algorithm.Our proposed method initially performs outlier detection to remove outlier data,using the Gaussian distribution method,and the Box-cox method is used to correctly order the dataset.After the outliers’detec-tion,the missing values are replaced by the data’s mean rather than their elimina-tion.In the stacking ensemble base model,multiple machine learning algorithms like Naïve Bayes,Bagging with random forest,and Adaboost Decision tree have been employed.CGRNN Meta model uses two hidden layers Long-Short-Time Memory(LSTM)and Gated Recurrent Unit(GRU)to calculate the weight matrix for diabetes prediction.Finally,the calculated weight matrix is passed to the soft-max function in the output layer to produce the diabetes prediction results.By using LSTM-based CG-RNN,the mean square error(MSE)value is 0.016 and the obtained accuracy is 91.33%.展开更多
An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters ...An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters fromdifferent locations,such as wind shear coefficient,roughness length,and atmospheric conditions.The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks(RNN)model to estimate WS at different heights using measurements from lower heights.The first optimization of the RNN is performed to minimize a differentiable cost function,namely,mean squared error(MSE),using the Broyden-Fletcher-Goldfarb-Shanno algorithm.Secondly,the RNN is optimized to reduce a non-differentiable cost function using simulated annealing(RNN-SA),namely mean absolute error(MAE).Estimation ofWS vertically at 50 m height is done by training RNN-SA with the actualWS data a 10–40 m heights.The estimatedWS at height of 50 m and the measured WS at 10–40 heights are further used to train RNN-SA to obtain WS at 60 m height.This procedure is repeated continuously until theWS is estimated at a height of 180 m.The RNN-SA performance is compared with the standard RNN,Multilayer Perceptron(MLP),Support Vector Machine(SVM),and state of the art methods like convolutional neural networks(CNN)and long short-term memory(LSTM)networks to extrapolate theWS vertically.The estimated values are also compared with realWS dataset acquired using LiDAR and tested using four error metrics namely,mean squared error(MSE),mean absolute percentage error(MAPE),mean bias error(MBE),and coefficient of determination(R2).The numerical experimental results show that the MSE values between the estimated and actualWS at 180mheight for the RNN-SA,RNN,MLP,and SVM methods are found to be 2.09,2.12,2.37,and 2.63,respectively.展开更多
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the ontology.In that,there are several methods to improve the retrieving...In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the ontology.In that,there are several methods to improve the retrieving process with improved accuracy and to reduce the searching time.Since,in the data recommendation system,this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation process.To improve the performance of data validation,this paper proposed a novel model of data similarity estimation and clustering method to retrieve the relevant data with the best matching in the big data processing.In this paper advanced model of the Logarithmic Directionality Texture Pattern(LDTP)method with a Metaheuristic Pattern Searching(MPS)system was used to estimate the similarity between the query data in the entire database.The overall work was implemented for the application of the data recommendation process.These are all indexed and grouped as a cluster to form a paged format of database structure which can reduce the computation time while at the searching period.Also,with the help of a neural network,the relevancies of feature attributes in the database are predicted,and the matching index was sorted to provide the recommended data for given query data.This was achieved by using the Distributional Recurrent Neural Network(DRNN).This is an enhanced model of Neural Network technology to find the relevancy based on the correlation factor of the feature set.The training process of the DRNN classifier was carried out by estimating the correlation factor of the attributes of the dataset.These are formed as clusters and paged with proper indexing based on the MPS parameter of similarity metric.The overall performance of the proposed work can be evaluated by varying the size of the training database by 60%,70%,and 80%.The parameters that are considered for performance analysis are Precision,Recall,F1-score and the accuracy of data retrieval,the query recommendation output,and comparison with other state-of-art methods.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u...This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.展开更多
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ...This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.展开更多
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit...Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy.展开更多
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structu...This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by coevolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productiv...Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.展开更多
In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was...In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision.展开更多
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ...Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.展开更多
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
文摘This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.
文摘Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.
文摘In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)+2 种基金JST Through the Establishment of University Fellowships Towards the Creation of Science Technology Innovation(JPMJFS2115)the National Natural Science Foundation of China(52078382)the State Key Laboratory of Disaster Reduction in Civil Engineering(CE19-A-01)。
文摘Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.
基金jointly supported by the National Science Foundation of China (Grant Nos. 42275007 and 41865003)Jiangxi Provincial Department of science and technology project (Grant No. 20171BBG70004)。
文摘The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation.
基金supported in part by Khalifa University of Science and Technology (KUST),United Arab Emirates under Award CIRA-2020-013.
文摘In this paper,a recurrent neural network(RNN)is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems.The neural network approximates the uncertainties related to unmodeled dynamics,parametric variations,and external disturbances.The RNN has a single hidden layer and uses the tracking error and the output as feedback to estimate the disturbance.The RNN weights are online adapted,and the adaptation laws are developed from the stability analysis of the controlled system with the RNN estimation.The used activation function,at the hidden layer,has an expression that simplifies the adaptation laws from the stability analysis.It is found that the adaptive RNN enhances the tracking performance of the feedback controller at the transient and steady state responses.The proposed RNN based feedback control is applied to a DC–DC converter for current regulation.Simulation and experimental results are provided to show its effectiveness.Compared to the feedforward neural network and the conventional feedback control,the RNN based feedback control provides good tracking performance.
文摘Drug-target interactions prediction(DTIP)remains an important requirement in thefield of drug discovery and human medicine.The identification of interaction among the drug compound and target protein plays an essential pro-cess in the drug discovery process.It is a lengthier and complex process for pre-dicting the drug target interaction(DTI)utilizing experimental approaches.To resolve these issues,computational intelligence based DTIP techniques were developed to offer an efficient predictive model with low cost.The recently devel-oped deep learning(DL)models can be employed for the design of effective pre-dictive approaches for DTIP.With this motivation,this paper presents a new drug target interaction prediction using optimal recurrent neural network(DTIP-ORNN)technique.The goal of the DTIP-ORNN technique is to predict the DTIs in a semi-supervised way,i.e.,inclusion of both labelled and unlabelled instances.Initially,the DTIP-ORNN technique performs data preparation process and also includes class labelling process,where the target interactions from the database are used to determine thefinal label of the unlabelled instances.Besides,drug-to-drug(D-D)and target-to-target(T-T)interactions are used for the weight initia-tion of the RNN based bidirectional long short term memory(BiLSTM)model which is then utilized to the prediction of DTIs.Since hyperparameters signifi-cantly affect the prediction performance of the BiLSTM technique,the Adam optimizer is used which mainly helps to improve the DTI prediction outcomes.In order to ensure the enhanced predictive outcomes of the DTIP-ORNN techni-que,a series of simulations are implemented on four benchmark datasets.The comparative result analysis shows the promising performance of the DTIP-ORNN method on the recent approaches.
文摘Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal failure,and cardi-ovascular disease,if left untreated.One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test,this procedure involves extracting blood quite frequently,which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring.Exist-ing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems,to overcome these issues,we proposed stacking ensemble learning-based convolutional gated recurrent neural network(CGRNN)Metamodel algorithm.Our proposed method initially performs outlier detection to remove outlier data,using the Gaussian distribution method,and the Box-cox method is used to correctly order the dataset.After the outliers’detec-tion,the missing values are replaced by the data’s mean rather than their elimina-tion.In the stacking ensemble base model,multiple machine learning algorithms like Naïve Bayes,Bagging with random forest,and Adaboost Decision tree have been employed.CGRNN Meta model uses two hidden layers Long-Short-Time Memory(LSTM)and Gated Recurrent Unit(GRU)to calculate the weight matrix for diabetes prediction.Finally,the calculated weight matrix is passed to the soft-max function in the output layer to produce the diabetes prediction results.By using LSTM-based CG-RNN,the mean square error(MSE)value is 0.016 and the obtained accuracy is 91.33%.
文摘An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters fromdifferent locations,such as wind shear coefficient,roughness length,and atmospheric conditions.The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks(RNN)model to estimate WS at different heights using measurements from lower heights.The first optimization of the RNN is performed to minimize a differentiable cost function,namely,mean squared error(MSE),using the Broyden-Fletcher-Goldfarb-Shanno algorithm.Secondly,the RNN is optimized to reduce a non-differentiable cost function using simulated annealing(RNN-SA),namely mean absolute error(MAE).Estimation ofWS vertically at 50 m height is done by training RNN-SA with the actualWS data a 10–40 m heights.The estimatedWS at height of 50 m and the measured WS at 10–40 heights are further used to train RNN-SA to obtain WS at 60 m height.This procedure is repeated continuously until theWS is estimated at a height of 180 m.The RNN-SA performance is compared with the standard RNN,Multilayer Perceptron(MLP),Support Vector Machine(SVM),and state of the art methods like convolutional neural networks(CNN)and long short-term memory(LSTM)networks to extrapolate theWS vertically.The estimated values are also compared with realWS dataset acquired using LiDAR and tested using four error metrics namely,mean squared error(MSE),mean absolute percentage error(MAPE),mean bias error(MBE),and coefficient of determination(R2).The numerical experimental results show that the MSE values between the estimated and actualWS at 180mheight for the RNN-SA,RNN,MLP,and SVM methods are found to be 2.09,2.12,2.37,and 2.63,respectively.
文摘In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the ontology.In that,there are several methods to improve the retrieving process with improved accuracy and to reduce the searching time.Since,in the data recommendation system,this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation process.To improve the performance of data validation,this paper proposed a novel model of data similarity estimation and clustering method to retrieve the relevant data with the best matching in the big data processing.In this paper advanced model of the Logarithmic Directionality Texture Pattern(LDTP)method with a Metaheuristic Pattern Searching(MPS)system was used to estimate the similarity between the query data in the entire database.The overall work was implemented for the application of the data recommendation process.These are all indexed and grouped as a cluster to form a paged format of database structure which can reduce the computation time while at the searching period.Also,with the help of a neural network,the relevancies of feature attributes in the database are predicted,and the matching index was sorted to provide the recommended data for given query data.This was achieved by using the Distributional Recurrent Neural Network(DRNN).This is an enhanced model of Neural Network technology to find the relevancy based on the correlation factor of the feature set.The training process of the DRNN classifier was carried out by estimating the correlation factor of the attributes of the dataset.These are formed as clusters and paged with proper indexing based on the MPS parameter of similarity metric.The overall performance of the proposed work can be evaluated by varying the size of the training database by 60%,70%,and 80%.The parameters that are considered for performance analysis are Precision,Recall,F1-score and the accuracy of data retrieval,the query recommendation output,and comparison with other state-of-art methods.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
基金supported by the National Natural Science Foundation of China(Grant No.12072090)。
文摘This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.111-2221 E-011081 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciatedWe also thank Wang Jhan Yang Charitable Trust Fund(Contract No.WJY 2020-HR-01)for its financial support.
文摘This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.
基金supported by the Natural Science Foundation of China(Grant Nos.51979158,51639008,51679135,and 51422905)the Program of Shanghai Academic Research Leader by Science and Technology Commission of Shanghai Municipality(Project No.19XD1421900)。
文摘Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy.
基金Project supported by the State Key Program of National Natural Science of China (Grant No 30230350)the Natural Science Foundation of Guangdong Province,China (Grant No 07006474)
文摘This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by coevolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
基金the Natural Science Foundation of China(NSFC)(61873024,61773053)the China Central Universities of USTB(FRF-TP-19-049A1Z)the National Key RD Program of China(2017YFB0306403)。
文摘Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.
基金Projects(70572090, 70373017) supported by the National Natural Science Foundation of China
文摘In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision.
基金the National Natural Science Foundation of China(No.51875209)the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120060)the Open Funds of State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment。
文摘Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.