Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow dr...Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow.展开更多
The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accura...The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accurate initial conditions. Five kinds of ‘V' shaped interfaces with different vertex angles are formed to highlight the effects of initial conditions on the flow characteristics. The results show that a spike is generated after the shock impact, and grows constantly with time. As the vertex angle increases, vortices generated on the interface become less noticeable, and the spike develops less pronouncedly. The linear growth rate of interface width after compression phase is estimated by a linear model and a revised linear model, and the latter is proven to be more effective for the interface with high initial amplitudes. The linear growth rate of interface width is, for the first time in a heavy/light interface configuration, found to be a non-monotonous function of the initial perturbation amplitude-wavelength ratio.展开更多
In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils sha...In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils shape, is able to control fibrous tissue direction, to improve the anisotropy of mechanical properties of axial forgings, to realize uniform forging. Therefore, the forging method can overcome the defect that conventional forging methods produce. The mechanism of the forging method with horizontal V-shaped anvil and the process of metal deformation are analyzed. The agreement of theoretical analysis with experimental study verifies the fact that the forging method with horizontal V-shaped anvil can control effectively the mechanical properties of axial forgings.展开更多
This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetr...This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetrical V-shaped canyon is divided into two sub-regions by using a circular-arc auxiliary boundary. The two sub-regions are represented by global and local cylindrical coordinate systems, respectively. In each coordinate system, the wave field satisfying the Helmholtz equation is represented by the separation of variables method, in terms of the series of both Bessel functions and Hankel functions with unknown complex coefficients. Then, the two wave fields are described in the local coordinate system using the Graf addition theorem. Finally, the unknown coefficients are sought by satisfying the continuity conditions of the auxiliary boundary. To consider the phase characteristics of the wave scattering, a parametric analysis is carried out in the time domain by assuming an incident signal of the Ricker type. Surface and subsurface transient responses demonstrate the characteristics and mechanisms of wave propagating and scattering.展开更多
We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN- based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three...We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN- based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaNbased light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal-organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.展开更多
Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZM...Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices.展开更多
Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwat...Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwater is solved using the finite-depth Green function and boundary element method, in which the Green function is solved by integral method. The Response-Amplitude Operator(RAO) of wave pressure is acquired according to the Longuet-Higgins' wave model and the linear Bernoulli equation. Furthermore, the wave pressure's response spectrum is calculated according to the wave spectrum by discretizing the frequency domain. The wave pressure's characteristic value corresponding to certain cumulative probability is determined according to the Rayleigh distribution of wave heights. The numerical results and field test results are compared, which indicates that the wave pressure calculated in random seas agrees with that of field measurements. It is found that the bigger angle between legs will cause the bigger pressure response, while the increase in leg length does not influence the pressure significantly. The pressure at the side of head sea is larger than that of back waves. When the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases clearly, while at the side of head sea, the situation is more complicated and there seems no obvious tendency. The concentration of wave energy around low frequency(long wavelength) will induce bigger wave pressure, and more attention should be paid to this situation for the structure safety.展开更多
A three-dimensional (3D) coordination polymer {[Co(bdc)(dpb)]·H2O}n (1) was prepared by solvothermal reaction of 1,3-dipyridyl benzene (dpb) with deprotonated 1,3-benzene- dicarboxylate (H2bdc), and w...A three-dimensional (3D) coordination polymer {[Co(bdc)(dpb)]·H2O}n (1) was prepared by solvothermal reaction of 1,3-dipyridyl benzene (dpb) with deprotonated 1,3-benzene- dicarboxylate (H2bdc), and was characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group C2/c with α = 15.478(6), b = 12.865(5), c = 24.091(10) ?, β = 95.599(5)°, V = 4774(3) ?3, C24H18CoN2O5, Mr = 473.34, Dc = 1.267 g/cm3, F(000) = 1864.0, μ = 0.748 mm-1 and Z = 8. Each Co(II) ion links three bdc2- anions to form an infinitely 1D ladder-shaped chain containing binuclear [(COO)Co]2 cluster, and dpb links adjacent 1D chains to form a 3D pcu framework. In addition, the UV-vis of 1 was also studied.展开更多
A two-dimensional(2D)coordination polymer{[Cd(bdc)(dpb)]·H2O}n(1)has been prepared by solvothermal reaction of 1,3-dipyridyl benzene(1,3-dpb)with deprotonated1,4-benzenedicarboxylate(H2bdc),and was ch...A two-dimensional(2D)coordination polymer{[Cd(bdc)(dpb)]·H2O}n(1)has been prepared by solvothermal reaction of 1,3-dipyridyl benzene(1,3-dpb)with deprotonated1,4-benzenedicarboxylate(H2bdc),and was characterized by elemental analysis,IR spectroscopy,and X-ray single-crystal diffraction.It crystallizes in the monoclinic system,space group C2/c with a=15.1839(12),b=20.7585(17),c=7.2989(6),β=117.3450(10)°,V=2043.5(3)3,C24H18N2O5Cd,Mr=526.81,Dc=1.712 g/cm3,F(000)=1056.0,μ=1.110 mm-1and Z=4.The neighboring Cd(II)ions link the bdc2-anions and 1,3-dpb to form an infinite 2D sheet,and such two2D sheets are interlocked with each other to form a 2D→2D sheet.Two groups of interlocked sheets are further linked together by intermolecularπ···πinteraction,giving a 3D supramolecular network.In addition,the fluorescence property of 1 was also studied.展开更多
Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numer- ically investigated. By simulations, it is found that the V-pits can act as effective escape paths fo...Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numer- ically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the fiat quantum wells. As the barrier thickness of the fiat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.展开更多
In this paper, we reveal that the enhanced transmission through a perforated metal film can be further boosted up by a V-shaped nanoslit, which consists of two connected oblique slits. The maximum transmission at reso...In this paper, we reveal that the enhanced transmission through a perforated metal film can be further boosted up by a V-shaped nanoslit, which consists of two connected oblique slits. The maximum transmission at resonance can be enhanced significantly by 71.5% in comparison with the corresponding vertical slit with the same exit width. The value and position of transmission resonance peak strongly depend on the apex angle of the V-shaped slit. The optimum apex angle, at which the transmission is maximal, is sensitive to the slit width. Such phenomena can be well explained by a concrete picture in which the incident wave drives free electrons on the slit walls. Moreover, we also simply analyze the splitting of the transmission peak in the symmetry broken V-shaped slit, originating from the resonances of different parts of the V-shaped slit. We expect that our findings will be used to design the nanoscale light sources based on the metal nanoslit structures.展开更多
The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip mea...The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip meander-line slow-wave structure, combining the advantages of a traditional microstrip and a rectangular helix. In this paper, simulations of the electromagnetic characteristics and the beam-wave interaction of this structure are carried out. Our study shows that when the design voltage and the current of a sheet electron beam are set to be 4700 V and 100 mA, respectively, this miniature millimeter-wave power amplifier is capable of delivering 160-W output power with a corresponding gain of 37.3 dB and a maximum interaction efficiency of 34% at 97 GHz.展开更多
基金supported by the National Science and Technology Supporting Plan (Grant No. 2009BAK56B05)Key Project of Chinese National Programs for Fundamental Research and Development (973 Program) (Grant No. 2008CB425803)
文摘Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow.
基金supported by the National Natural Science Foundation of China(U1530103,11302219,and 11272308)
文摘The Richtmyer-Meshkov instability ofa ‘V' shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a ‘V' shaped interface with accurate initial conditions. Five kinds of ‘V' shaped interfaces with different vertex angles are formed to highlight the effects of initial conditions on the flow characteristics. The results show that a spike is generated after the shock impact, and grows constantly with time. As the vertex angle increases, vortices generated on the interface become less noticeable, and the spike develops less pronouncedly. The linear growth rate of interface width after compression phase is estimated by a linear model and a revised linear model, and the latter is proven to be more effective for the interface with high initial amplitudes. The linear growth rate of interface width is, for the first time in a heavy/light interface configuration, found to be a non-monotonous function of the initial perturbation amplitude-wavelength ratio.
基金This project is supported by National Natural Science Foundation of China (No.59235101).
文摘In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils shape, is able to control fibrous tissue direction, to improve the anisotropy of mechanical properties of axial forgings, to realize uniform forging. Therefore, the forging method can overcome the defect that conventional forging methods produce. The mechanism of the forging method with horizontal V-shaped anvil and the process of metal deformation are analyzed. The agreement of theoretical analysis with experimental study verifies the fact that the forging method with horizontal V-shaped anvil can control effectively the mechanical properties of axial forgings.
基金Projects (50436010, 50375055, 50175028) supported by the National Natural Science Foundation of China Project (04105942) supported by the Natural Science Foundation of Guangdong Province, China
基金National Natural Science Foundation of China Under Grant No.51278382
文摘This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetrical V-shaped canyon is divided into two sub-regions by using a circular-arc auxiliary boundary. The two sub-regions are represented by global and local cylindrical coordinate systems, respectively. In each coordinate system, the wave field satisfying the Helmholtz equation is represented by the separation of variables method, in terms of the series of both Bessel functions and Hankel functions with unknown complex coefficients. Then, the two wave fields are described in the local coordinate system using the Graf addition theorem. Finally, the unknown coefficients are sought by satisfying the continuity conditions of the auxiliary boundary. To consider the phase characteristics of the wave scattering, a parametric analysis is carried out in the time domain by assuming an incident signal of the Ricker type. Surface and subsurface transient responses demonstrate the characteristics and mechanisms of wave propagating and scattering.
基金supported by the Natural Science Foundation of Fujian Province,China(Grant No.2012J01280)
文摘We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN- based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaNbased light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal-organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21103232,51272291,and 11174371)
文摘Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant no.51021004)the Research Fund of State Key Laboratory in Ocean Engineering of Shanghai Jiaotong University(Grant no.1104)the Scientific Research Foundation of Civil Aviation University of China(Grant no.09QD08X)
文摘Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwater is solved using the finite-depth Green function and boundary element method, in which the Green function is solved by integral method. The Response-Amplitude Operator(RAO) of wave pressure is acquired according to the Longuet-Higgins' wave model and the linear Bernoulli equation. Furthermore, the wave pressure's response spectrum is calculated according to the wave spectrum by discretizing the frequency domain. The wave pressure's characteristic value corresponding to certain cumulative probability is determined according to the Rayleigh distribution of wave heights. The numerical results and field test results are compared, which indicates that the wave pressure calculated in random seas agrees with that of field measurements. It is found that the bigger angle between legs will cause the bigger pressure response, while the increase in leg length does not influence the pressure significantly. The pressure at the side of head sea is larger than that of back waves. When the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases clearly, while at the side of head sea, the situation is more complicated and there seems no obvious tendency. The concentration of wave energy around low frequency(long wavelength) will induce bigger wave pressure, and more attention should be paid to this situation for the structure safety.
基金supported by the National Natural Science Foundation of China(21301005,21271008,51173002)Natural Science Foundation of Anhui Province(1308085QB34)the young teacher’s research foundation of Anhui University of Science and Technology(11227,2012QNZ08)
文摘A three-dimensional (3D) coordination polymer {[Co(bdc)(dpb)]·H2O}n (1) was prepared by solvothermal reaction of 1,3-dipyridyl benzene (dpb) with deprotonated 1,3-benzene- dicarboxylate (H2bdc), and was characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group C2/c with α = 15.478(6), b = 12.865(5), c = 24.091(10) ?, β = 95.599(5)°, V = 4774(3) ?3, C24H18CoN2O5, Mr = 473.34, Dc = 1.267 g/cm3, F(000) = 1864.0, μ = 0.748 mm-1 and Z = 8. Each Co(II) ion links three bdc2- anions to form an infinitely 1D ladder-shaped chain containing binuclear [(COO)Co]2 cluster, and dpb links adjacent 1D chains to form a 3D pcu framework. In addition, the UV-vis of 1 was also studied.
基金supported by the National Natural Science Foundation of China(21071008)Natural Science Foundation of Anhui Province(1308085QB34)
文摘A two-dimensional(2D)coordination polymer{[Cd(bdc)(dpb)]·H2O}n(1)has been prepared by solvothermal reaction of 1,3-dipyridyl benzene(1,3-dpb)with deprotonated1,4-benzenedicarboxylate(H2bdc),and was characterized by elemental analysis,IR spectroscopy,and X-ray single-crystal diffraction.It crystallizes in the monoclinic system,space group C2/c with a=15.1839(12),b=20.7585(17),c=7.2989(6),β=117.3450(10)°,V=2043.5(3)3,C24H18N2O5Cd,Mr=526.81,Dc=1.712 g/cm3,F(000)=1056.0,μ=1.110 mm-1and Z=4.The neighboring Cd(II)ions link the bdc2-anions and 1,3-dpb to form an infinite 2D sheet,and such two2D sheets are interlocked with each other to form a 2D→2D sheet.Two groups of interlocked sheets are further linked together by intermolecularπ···πinteraction,giving a 3D supramolecular network.In addition,the fluorescence property of 1 was also studied.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61564007 and 11364034)the Sci-Tech Support Plan of Jiangxi Province,China(Grant No.20141BBE50035)
文摘Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numer- ically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the fiat quantum wells. As the barrier thickness of the fiat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174372)the Youth Foundation of the Education Department of Hunan Province,China(Grant Nos.11B134 and 10B118)
文摘In this paper, we reveal that the enhanced transmission through a perforated metal film can be further boosted up by a V-shaped nanoslit, which consists of two connected oblique slits. The maximum transmission at resonance can be enhanced significantly by 71.5% in comparison with the corresponding vertical slit with the same exit width. The value and position of transmission resonance peak strongly depend on the apex angle of the V-shaped slit. The optimum apex angle, at which the transmission is maximal, is sensitive to the slit width. Such phenomena can be well explained by a concrete picture in which the incident wave drives free electrons on the slit walls. Moreover, we also simply analyze the splitting of the transmission peak in the symmetry broken V-shaped slit, originating from the resonances of different parts of the V-shaped slit. We expect that our findings will be used to design the nanoscale light sources based on the metal nanoslit structures.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971038)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009Z003)
文摘The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip meander-line slow-wave structure, combining the advantages of a traditional microstrip and a rectangular helix. In this paper, simulations of the electromagnetic characteristics and the beam-wave interaction of this structure are carried out. Our study shows that when the design voltage and the current of a sheet electron beam are set to be 4700 V and 100 mA, respectively, this miniature millimeter-wave power amplifier is capable of delivering 160-W output power with a corresponding gain of 37.3 dB and a maximum interaction efficiency of 34% at 97 GHz.