The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ...The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.展开更多
The technique of imaging a target with a complicated motion using an Inverse Synthetic Aperture Radar(ISAR) system is an effective tool in the field of radar signal processing. After the translational compensation, th...The technique of imaging a target with a complicated motion using an Inverse Synthetic Aperture Radar(ISAR) system is an effective tool in the field of radar signal processing. After the translational compensation, the received signal reflected from the target can take the form of a multi-component Polynomial Phase Signal(m-PPS), and the high quality ISAR image can be provided via the combination between the estimated parameters of the m-PPS and the Range Instantaneous-Doppler technique(RID). For a target with a high maneuvrability, the occurrence of scatterers Migration Through Resolution Cell(MTRC), caused by the rotational movement could be appearing. That is why the variation in the amplitude of the echo during the time of observation cannot be neglected. The purpose of this study is the parameters estimation of the m-PPS signal with order three in the case of the Time Varying Amplitude(TVA). The Improved-version of the Product High-order Ambiguity Function(IPHAF) with TVA is proposed to improve the quality of the ISAR image compared with traditional techniques based on a constant amplitude;the experimental outcomes confirm that the new IPHAF-TVA method presented in this study is an effective technique to make the ISAR image very clear.展开更多
文摘The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.
基金supported in part by the National Natural Science Foundation of China (No. 61871146)。
文摘The technique of imaging a target with a complicated motion using an Inverse Synthetic Aperture Radar(ISAR) system is an effective tool in the field of radar signal processing. After the translational compensation, the received signal reflected from the target can take the form of a multi-component Polynomial Phase Signal(m-PPS), and the high quality ISAR image can be provided via the combination between the estimated parameters of the m-PPS and the Range Instantaneous-Doppler technique(RID). For a target with a high maneuvrability, the occurrence of scatterers Migration Through Resolution Cell(MTRC), caused by the rotational movement could be appearing. That is why the variation in the amplitude of the echo during the time of observation cannot be neglected. The purpose of this study is the parameters estimation of the m-PPS signal with order three in the case of the Time Varying Amplitude(TVA). The Improved-version of the Product High-order Ambiguity Function(IPHAF) with TVA is proposed to improve the quality of the ISAR image compared with traditional techniques based on a constant amplitude;the experimental outcomes confirm that the new IPHAF-TVA method presented in this study is an effective technique to make the ISAR image very clear.