期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
1
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
下载PDF
An attention-based prototypical network for forest fire smoke few-shot detection 被引量:2
2
作者 Tingting Li Haowei Zhu +1 位作者 Chunhe Hu Junguo Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1493-1504,共12页
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn... Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches. 展开更多
关键词 Forest fire smoke detection Few-shot learning channel attention module spatial attention module Prototypical network
下载PDF
基于双注意力机制的FMCW雷达人体行为识别
3
作者 卓智海 祝文胜 王双龙 《北京信息科技大学学报(自然科学版)》 2024年第5期58-66,共9页
为了提高调频连续波(frequency modulated continuous wave,FMCW)雷达人体行为识别的分类精度和泛化性能,提出了一种基于双注意力机制的特征融合方法。通过设置阈值,对距离-时间谱图和微多普勒谱图中的有效频谱进行提取、拼接后送入Alex... 为了提高调频连续波(frequency modulated continuous wave,FMCW)雷达人体行为识别的分类精度和泛化性能,提出了一种基于双注意力机制的特征融合方法。通过设置阈值,对距离-时间谱图和微多普勒谱图中的有效频谱进行提取、拼接后送入AlexNet和VGG16神经网络来提取特征;加入空间注意力和改进的通道注意力模块,丢弃冗余信息,以增强对重要信息的关注,获取更感兴趣的特征进行特征融合分类。实验结果表明,该方法对6种日常人体行为的平均识别准确率高达97.0%。 展开更多
关键词 调频连续波雷达 特征融合 通道注意力 空间注意力 人体行为识别
下载PDF
基于CSLS-CycleGAN的侧扫声纳水下目标图像样本扩增法 被引量:1
4
作者 汤寓麟 王黎明 +3 位作者 余德荧 李厚朴 刘敏 张卫东 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1514-1524,共11页
针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络... 针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络(least squares generative adversarial networks,LSGAN)及循环对抗生成网络(cycle generative adversarial networks,CycleGAN)的侧扫声纳水下目标图像样本扩增方法。首先,受CycleGAN的启发,设计基于循环一致性的单循环网络结构,保证模型的训练效率。然后,在生成器中融合CSA模块,减少信息弥散的同时增强跨纬度交互。最后,设计了基于LSGAN的损失函数,提高生成图像质量的同时提高训练稳定性。在船舶光学域数据集与侧扫声纳沉船数据集上进行实验,所提方法实现了光学-侧扫声纳样本间信息的高效、稳健转换以及大量侧扫声纳目标样本的扩增。同时,基于本文生成样本训练后的检测模型进行了水下目标检测,结果表明,使用本文样本扩增数据训练后的模型在少样本沉船目标检测的平均准确率达到了84.71%,证明了所提方法实现了零样本和小样本水下强代表性目标样本的高质量扩增,并为高性能水下目标检测模型构建提供了一种新的途径。 展开更多
关键词 样本扩增 侧扫声纳 循环生成对抗网络 通道和空间注意力模块 最小二乘生成对抗网络
下载PDF
基于改进YOLOv5及危险区域判断的碰撞预警系统研究
5
作者 衣振兴 詹振飞 +2 位作者 毛青 孙博文 王菊 《汽车技术》 CSCD 北大核心 2024年第4期1-6,共6页
为提升碰撞预警系统对周围环境的感知能力,提出一种基于YOLOv5及危险区域判断的碰撞预警系统。首先,通过通道注意力模块提高模型的判别能力和准确性,然后,使用路径聚合网络与空间金字塔池化提高模型对多尺度特征的提取能力,最后,通过引... 为提升碰撞预警系统对周围环境的感知能力,提出一种基于YOLOv5及危险区域判断的碰撞预警系统。首先,通过通道注意力模块提高模型的判别能力和准确性,然后,使用路径聚合网络与空间金字塔池化提高模型对多尺度特征的提取能力,最后,通过引入预警激活区域过滤相对安全的目标,提高了预警系统的预警精确度。结果表明,引入预警激活区域后,与无预警激活区域相比,预警系统的准确度、精度和召回率分别提高20%、50%和26.7%,运行速度提升49.1%,进一步证明了方法的有效性。 展开更多
关键词 YOLOv5 通道注意力模块 路径聚合网络 空间金字塔池化 预警激活区域 碰撞预警系统
下载PDF
增强语义分割的网络模型PS-UNet 被引量:1
6
作者 范憧憧 齐苏敏 +2 位作者 孟静 李志琦 王妍 《曲阜师范大学学报(自然科学版)》 CAS 2023年第1期56-63,共8页
文章提出了一种提升上下文依赖关系的增强语义分割网络模型PS-UNet实现医学图像分割.PS-UNet将残差块、PCA模块和SPP模块融合到U-Net网络模型中,可获取更多的特征信息,从而提升分割效果.该模型既可以对器官轮廓粗分割又可以对视网膜血... 文章提出了一种提升上下文依赖关系的增强语义分割网络模型PS-UNet实现医学图像分割.PS-UNet将残差块、PCA模块和SPP模块融合到U-Net网络模型中,可获取更多的特征信息,从而提升分割效果.该模型既可以对器官轮廓粗分割又可以对视网膜血管和细胞精细分割.在公开的数据集上分别对肺部、视网膜血管和细胞分割进行了测试.实验结果表明,与当前先进网络模型相比,PS-UNet在所有实验中,性能均有所提升,其中肺部分割中准确率和灵敏度相对于U-Net网络模型分别提高了2.03%和2.24%,Dice相似系数达到了97.16%. 展开更多
关键词 医学图像分割 U-Net 位置通道注意力模块 空间金字塔池化模块 增强语义分割
下载PDF
嵌入注意力的GaborCNN快速人脸表情识别方法 被引量:1
7
作者 南亚会 华庆一 刘继华 《软件导刊》 2023年第9期182-189,共8页
人脸表情识别是智能人机交互研究的基础问题之一,面部情绪变化与嘴、眼睛、眉毛、鼻子等区域密切相关,这些特征对识别表情非常重要。为此,提出一个由4个Gabor滤波卷积层、注意力模块和两个全链接层组成的注意力Gabor卷积网络,同时使用... 人脸表情识别是智能人机交互研究的基础问题之一,面部情绪变化与嘴、眼睛、眉毛、鼻子等区域密切相关,这些特征对识别表情非常重要。为此,提出一个由4个Gabor滤波卷积层、注意力模块和两个全链接层组成的注意力Gabor卷积网络,同时使用不平衡损失focalloss对网络进行优化。首先,通过Gabor核与传统卷积滤波器调制的Gabor定向滤波器相较于传统卷积滤波器能更好地捕获感兴趣区域的信息,然后利用通道注意力、空间注意力模块提取区域中更关键的特征。在FERPlus和RAF-DB数据集上的实验表明,该模型结构简单、易于训练、计算成本低,识别精度分别达到88.39%、87.22%。 展开更多
关键词 人脸表情识别 Gabor方向滤波器 Gabor卷积网络 通道注意力 空间注意力
下载PDF
基于改进CBAM注意力机制的害虫分类算法 被引量:1
8
作者 骆睿 朱华生 +3 位作者 蓝宏 陈聪 任桥峰 段发样 《南昌工程学院学报》 CAS 2023年第4期92-99,共8页
将传统深度学习的CBAM注意力机制算法直接用于害虫分类,得到的精度不理想,主要原因是害虫个体小、害虫与背景颜色差异小。为此,提出一种适用害虫分类的改进CBAM注意力机制算法。该算法通过改进通道注意力模块,提高害虫的关键信息特征在... 将传统深度学习的CBAM注意力机制算法直接用于害虫分类,得到的精度不理想,主要原因是害虫个体小、害虫与背景颜色差异小。为此,提出一种适用害虫分类的改进CBAM注意力机制算法。该算法通过改进通道注意力模块,提高害虫的关键信息特征在特征图中的比重,以解决害虫与背景颜色差异小的问题;改进空间注意力模块,以解决害虫个体小、感知难的问题。在消融实验中得到的结果表明,该算法能够有效解决害虫个体小、害虫与背景颜色差异小等问题,使分类准确率得到提升,达到75.9%。 展开更多
关键词 深度学习 害虫分类 通道注意力 空间注意力 CBAM
下载PDF
基于改进MobileNetV3烧结断面火焰图像识别 被引量:5
9
作者 梁秀满 安金铭 +2 位作者 曹晓华 曾凯 王福斌 《电子测量技术》 北大核心 2023年第14期182-187,共6页
烧结机尾断面火焰图像蕴含大量与烧结终点相关的特征信息,充分利用烧结火焰图像特征信息进行在线判断烧结终点状态,具有可行性及工程实际意义。针对烧结机尾断面火焰图像特征信息难以提取、识别精度低以及难以满足实时性等问题,提出一... 烧结机尾断面火焰图像蕴含大量与烧结终点相关的特征信息,充分利用烧结火焰图像特征信息进行在线判断烧结终点状态,具有可行性及工程实际意义。针对烧结机尾断面火焰图像特征信息难以提取、识别精度低以及难以满足实时性等问题,提出一种基于改进的MobileNetV3烧结断面火焰图像识别算法。以MobileNetV3作为烧结终点火焰状态特征信息提取的基础模型,引入注意力机制;改进通道注意力结构,减少特征损失提高识别精度;引入空间注意力机制,设计双分支通道空间注意力模块精确捕捉了红火区在烧结断面火焰图像中的位置和内容信息;引入数据增强和余弦退火学习率来提高模型的泛化能力,并采用冻结训练策略加速模型收敛。在烧结火焰数据集上的实验表明,该算法能够充分利用烧结火焰图像中的特征信息,识别准确率达到97.54%,较改进前提高了6.41%。 展开更多
关键词 双分支通道空间注意力模块 MobileNetV3 烧结火焰图像 余弦退火
下载PDF
基于空间多尺度残差网络的红外与可见光图像融合
10
作者 张亦孟 林伟国 《大气与环境光学学报》 CAS CSCD 2023年第5期469-478,共10页
针对如何充分提取和融合红外与可见光图像典型特征的问题,提出一种基于空间多尺度残差网络的图像融合算法。首先,将源图像输入基于空间多尺度残差模块组成的编码器网络,通过源图像重建任务,训练编码器自动获取重要特征信息的能力;然后,... 针对如何充分提取和融合红外与可见光图像典型特征的问题,提出一种基于空间多尺度残差网络的图像融合算法。首先,将源图像输入基于空间多尺度残差模块组成的编码器网络,通过源图像重建任务,训练编码器自动获取重要特征信息的能力;然后,引入特征金字塔结构,设计了特征通道自注意力机制,编码器输出的基础层和细节层进行融合,减小尺度噪声,并由解码器重构出融合图像;最后,利用公开数据集进行定性和定量实验,证明了改进算法在突出红外图像目标和保留可见光图像纹理细节两方面的优势,相比于DDcGAN算法,新算法的标准差和平均梯度分别提升了12.91%和47.41%。 展开更多
关键词 图像融合 自动编码器 空间多尺度残差模块 通道自注意力
下载PDF
一种新的基于通道-空间融合注意力及SwinT的细粒度图像分类算法
11
作者 姜昊 凌萍 陈寸生保 《南京师范大学学报(工程技术版)》 CAS 2023年第3期36-42,共7页
细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a ... 细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a novel channel⁃spatial attention module),分别从通道维和空间维同时提取特征,再将其融入到Swin Transformer模型中以提高其小尺度中多头注意力信息的提取能力.SwinT⁃NCSA算法特别关注了对分类有用的区域,同时忽视对分类无用的背景区域,以此在细粒度图像分类任务中达到较高的分类准确率.在FGVC Aircraft飞机数据集、CUB-200-2011鸟类数据集和Stanford Cars车类数据集3个公共数据集上的实验表明,SwinT⁃NCSA算法可以分别取得93.3%、88.4%和94.7%的准确率,优于同类算法. 展开更多
关键词 细粒度图像分类 Swin TRANSFORMER 通道-空间融合注意力模块 深度学习 弱监督学习
下载PDF
引入注意力机制的自监督光流计算 被引量:2
12
作者 安峰 戴军 +1 位作者 韩振 严仲兴 《图学学报》 CSCD 北大核心 2022年第5期841-848,共8页
光流计算是诸多计算机视觉系统的关键模块,广泛应用于动作识别、机器人定位与导航等领域。但目前端到端的光流计算仍受限于数据源的缺少,尤其是真实场景下的光流数据难以获取。人工合成的光流数据占绝大多数,且合成数据不能完全反应真... 光流计算是诸多计算机视觉系统的关键模块,广泛应用于动作识别、机器人定位与导航等领域。但目前端到端的光流计算仍受限于数据源的缺少,尤其是真实场景下的光流数据难以获取。人工合成的光流数据占绝大多数,且合成数据不能完全反应真实场景(如树叶晃动、行人倒影等),难以避免过拟合等情况。无监督或自监督方法可以利用海量的视频数据进行训练,摆脱了对数据集的依赖,是解决数据集缺少的有效途径。基于此搭建了一个自监督学习光流计算网络,其中的“Teacher”模块和“Student”模块集成了最新光流计算网络:稀疏相关体网络(SCV),减少了计算冗余量;同时引入注意力模型作为网络的一个节点,以提高图像特征在通道和空间上的维度属性。将SCV与注意力机制集成在自监督学习光流计算网络之中,在KITTI 2015数据集上的测试结果达到或超过了常见的有监督训练网络。 展开更多
关键词 光流计算 自监督学习 卷积注意力模块 空间/通道注意力 稀疏相关体
下载PDF
基于注意力机制的街景图像语义分割方法
13
作者 瑚琦 王兵 卞亚林 《软件导刊》 2022年第9期141-145,共5页
街道场景图像的准确分割对于自动驾驶系统具有重要辅助作用,而针对该场景的现有语义分割方法仍存在分割精度不高、参数量大等问题。为有效改善语义分割性能,通过构建空间注意力模块和通道注意力模块,提出一种注意力语义分割网络。该网... 街道场景图像的准确分割对于自动驾驶系统具有重要辅助作用,而针对该场景的现有语义分割方法仍存在分割精度不高、参数量大等问题。为有效改善语义分割性能,通过构建空间注意力模块和通道注意力模块,提出一种注意力语义分割网络。该网络首先采用残差网络提取特征,然后并行使用两种注意力模块分别从空间和通道维度自适应细化特征图,以使网络在训练学习过程中更加关注信息丰富的空间区域和通道,进而增强网络表示能力。所提注意力模块具有结构简单和轻量级的特点,能与网络一起进行端到端训练。在Cityscapes和CamVid数据集上的实验结果表明,该注意力语义分割网络在较少的参数条件下,可获得较好的分割效果。 展开更多
关键词 街景图像 语义分割 残差网络 空间注意力模块 通道注意力模块
下载PDF
注意力残差网络的单图像去雨方法研究 被引量:7
14
作者 徐爱生 唐丽娟 陈冠楠 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1281-1285,共5页
恶劣的雨天天气会严重影响图像质量,进而导致目标检测,目标追踪等算法性能急剧下降,因此图像去雨得到了快速发展.本文提出一种基于注意力残差网络的端到端图像去雨算法,通过卷积神经网络强大的表示能力,学习出从有雨到无雨图像的映射.... 恶劣的雨天天气会严重影响图像质量,进而导致目标检测,目标追踪等算法性能急剧下降,因此图像去雨得到了快速发展.本文提出一种基于注意力残差网络的端到端图像去雨算法,通过卷积神经网络强大的表示能力,学习出从有雨到无雨图像的映射.将注意力模块引入残差模块中,首先利用通道注意力机制自适应学习通道维度上不同特征,然后利用空间注意力机制建立雨条纹的内在关系,之后将注意力模块与残差模块相结合得到注意力残差单元,最后将其堆叠成高性能去雨网络.公开的合成和真实世界图像数据集上的实验表明,本文所提出的方法在视觉上可以大大提高去雨的性能. 展开更多
关键词 单图像去雨 深度残差网络 注意力机制 通道注意力模块 空间注意力模块
下载PDF
改进残差结构的轻量级故障诊断方法 被引量:3
15
作者 刘芯志 彭成 +1 位作者 满君丰 刘翊 《计算机工程与设计》 北大核心 2022年第8期2303-2310,共8页
针对大型机械装备环境噪声复杂,深度学习网络层数过深导致的巨大计算开销以及故障诊断人工特征提取的复杂性,提出改进残差结构的轻量级SCARN模型。SCARN模型使用蓝图可分离卷积代替常规卷积层,减少大量参数,设计轻量级空间通道注意力结... 针对大型机械装备环境噪声复杂,深度学习网络层数过深导致的巨大计算开销以及故障诊断人工特征提取的复杂性,提出改进残差结构的轻量级SCARN模型。SCARN模型使用蓝图可分离卷积代替常规卷积层,减少大量参数,设计轻量级空间通道注意力结构,加强特征表达能力,改进深度残差收缩模块,提高模型复杂噪声场景的鲁棒性。通过增加不同幅值的高斯白噪声模拟轴承信号复杂环境场景。实验结果表明,该模型4种评价指标均优于对比算法,具有良好的抗噪性能。 展开更多
关键词 蓝图可分离卷积 空间通道注意力 深度残差收缩模块 轻量级 高斯白噪声
下载PDF
基于改进YOLOv4-tiny的焊点检测方法 被引量:3
16
作者 刘毅 江卫华 王浩 《自动化与仪表》 2022年第10期61-67,共7页
在工业生产过程中,产品的焊接质量对产品质量起到重要作用,因此,对焊点的检测是生产过程中一个重要环节。该文提出了一种基于改进YOLOv4-tiny算法的焊点检测方法,首先在YOLOv4-tiny主干网络后加入空间金字塔池化模块,对不同大小的特征... 在工业生产过程中,产品的焊接质量对产品质量起到重要作用,因此,对焊点的检测是生产过程中一个重要环节。该文提出了一种基于改进YOLOv4-tiny算法的焊点检测方法,首先在YOLOv4-tiny主干网络后加入空间金字塔池化模块,对不同大小的特征进行提取与聚合,提高网络的特征提取能力;其次,在颈部网络中添加ECA模块,加强网络对重点目标的识别;使用EIoU让目标框的回归损失变得更稳定,在分类损失中使用标签平滑,减少模型训练中的过拟合问题。在训练阶段,使用预训练权重以及冻结训练方法,提高模型训练的效率和效果。通过实验可知,改进算法对焊点识别的平均精度均值为99.16%,比原算法提升了3.59%,检测速度达到91 f/s,实现了对焊点快速、精确的检测,具有良好的应用前景。 展开更多
关键词 焊点检测 YOLOv4-tiny 空间金字塔池化 ECA模块 EIoU
下载PDF
基于2D CNN和Transformer的人体动作识别 被引量:14
17
作者 朱相华 智敏 殷雁君 《电子测量技术》 北大核心 2022年第15期123-129,共7页
人体动作识别是计算机视觉领域的研究热点之一,在人机交互、视频监控等方面具有深远的理论研究意义。为了解决2D CNN无法有效获取时间关系等问题,利用Transformer在建模长期依赖关系上的优势,引入Transformer架构并将其与2D CNN相结合... 人体动作识别是计算机视觉领域的研究热点之一,在人机交互、视频监控等方面具有深远的理论研究意义。为了解决2D CNN无法有效获取时间关系等问题,利用Transformer在建模长期依赖关系上的优势,引入Transformer架构并将其与2D CNN相结合用于人体动作识别,以更好地捕获上下文时间信息。首先使用融合通道-空间注意力模块的2D CNN提取强化的帧内空间特征,其次利用Transformer捕捉帧间的时间特征,最后应用MLP Head进行动作分类。实验结果表明在HMDB-51数据集和UCF-101数据集上分别达到了69.4%和95.5%的识别准确度。 展开更多
关键词 人体动作识别 2D CNN 通道-空间注意力模块 TRANSFORMER
下载PDF
基于条件对抗自动编码器的跨年龄人脸合成
18
作者 程志康 孙锐 +1 位作者 孙琦景 张旭东 《计算机工程》 CAS CSCD 北大核心 2022年第6期304-313,共10页
跨年龄人脸合成是指通过已知特定年龄的人脸图像合成其他年龄段的人脸图像,在动漫娱乐、公共安全、刑事侦查等领域有广泛的应用。针对跨年龄人脸合成图像容易产生器官变形扭曲、人脸局部特征保持效果不佳等问题,提出一种基于条件对抗自... 跨年龄人脸合成是指通过已知特定年龄的人脸图像合成其他年龄段的人脸图像,在动漫娱乐、公共安全、刑事侦查等领域有广泛的应用。针对跨年龄人脸合成图像容易产生器官变形扭曲、人脸局部特征保持效果不佳等问题,提出一种基于条件对抗自动编码器的合成方法。通过在解码器结构中引入通道关注和空间关注模块,分别从通道域和空间域提取重要信息,使模型在训练过程中忽略背景等无关信息,聚焦人脸图像变化的区域,有效解决合成图像器官扭曲变形等问题。此外,设计一种多尺度特征损失网络,从多个尺度更深层次地约束人脸图像的局部结构特征,从而保持人脸合成过程中局部特征结构的稳定性。在UTKFace跨年龄人脸数据集上的实验结果表明,与CAAE方法相比,该方法有效避免了人脸器官变形扭曲问题,能够更好地保持人脸局部结构特征,具有较佳的人脸合成效果和细节保持能力。 展开更多
关键词 跨年龄人脸合成 条件对抗自动编码器 通道关注模块 空间关注模块 多尺度特征损失网络
下载PDF
基于重参数化多尺度融合网络的高效极暗光原始图像降噪 被引量:3
19
作者 魏恺轩 付莹 《计算机科学》 CSCD 北大核心 2022年第8期120-126,共7页
实用的暗光降噪增强解决方案往往需要具备计算速度快、内存效率高、能够实现视觉上高质量的降噪等优点。现有方法大多以提升降噪质量为目标,因此在速度和内存要求上有所折中,这在很大程度上限制了其实用性。文中提出了一种新的深度降噪... 实用的暗光降噪增强解决方案往往需要具备计算速度快、内存效率高、能够实现视觉上高质量的降噪等优点。现有方法大多以提升降噪质量为目标,因此在速度和内存要求上有所折中,这在很大程度上限制了其实用性。文中提出了一种新的深度降噪网络——重参数化多尺度融合网络,用于极暗光单张原始图像降噪,在不损失降噪性能的同时加快模型的推断速度并降低内存开销。具体地,在多尺度空间提取图像特征,利用轻量级的空间通道并行注意力模块动态自适应地聚焦于空间及通道中的核心特征;同时使用重参数化的卷积单元,在不增加任何推断计算量的情况下进一步丰富模型的表征能力。该模型在常见CPU上(如Intel i7-7700K)可以在1s左右恢复超高清4K分辨率图像,在普通GPU(如NVIDIA GTX 1080Ti)上以24帧率的速度运行,在几乎4倍快于现有先进方法(如UNet)的同时仍保持具有竞争力的恢复质量。 展开更多
关键词 重参数化卷积单元 多尺度融合 空间通道并行注意力模块 极暗光图像降噪
下载PDF
基于卷积网络注意力机制的人脸表情识别
20
作者 郭昕刚 程超 沈紫琪 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第8期2319-2328,共10页
针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,... 针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,专注于表情关键点中细微差别特征信息;利用细节模块进一步提取深度特征信息。为得到更高准确度,引入联合损失函数延长类外距离,缩短类内距离以提高表情识别准确度。本文将此网络运用到数据集FER2013、CK+中,实验结果表明:本算法平均识别率分别为63.91%、97.98%,参数量为11.34 M。与VGG网络、残差网络等对比,该模型不仅提高了识别率,还减少了冗余参数量。 展开更多
关键词 面部表情识别 残差模块 通道-空间注意力机制 细化模块
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部