期刊文献+
共找到290篇文章
< 1 2 15 >
每页显示 20 50 100
Construction of MnS/MoS_(2) heterostructure on two-dimensional MoS_(2) surface to regulate the reaction pathways for high-performance Li-O_(2) batteries
1
作者 Guoliang Zhang Han Yu +6 位作者 Xia Li Xiuqi Zhang Chuanxin Hou Shuhui Sun Yong Du Zhanhu Guo Feng Dang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期443-452,I0012,共11页
The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuni... The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuning the adsorption strength in 2D materials to the reaction intermediates is essential for achieving high-performance LOBs.Herein,a MnS/MoS_(2) heterostructure is designed as a cathode catalyst by adjusting the adsorption behavior at the surface.Different from the toroidal-like discharge products on the MoS_(2) cathode,the MnS/MoS_(2) surface displays an improved adsorption energy to reaction species,thereby promoting the growth of the film-like discharge products.MnS can disturb the layer growth of MoS_(2),in which the stack edge plane features a strong interaction with the intermediates and limits the growth of the discharge products.Experimental and theoretical results confirm that the MnS/MoS_(2) heterostructure possesses improved electron transfer kinetics at the interface and plays an important role in the adsorption process for reaction species,which finally affects the morphology of Li_2O_(2),In consequence,the MnS/MoS_(2) heterostructure exhibits a high specific capacity of 11696.0 mA h g^(-1) and good cycle stability over 1800 h with a fixed specific capacity of 600 mA h g^(-1) at current density of100 mA g^(-1) This work provides a novel interfacial engineering strategy to enhance the performance of LOBs by tuning the adsorption properties of 2D materials. 展开更多
关键词 Li-O_(2)batteries two-dimensional materials MnS/MoS_(2)heterostructure Edge plane Adsorption behavior
下载PDF
Strong hetero-interface interaction in 2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures for highly-efficient photocatalytic hydrogen generation
2
作者 Xu Guo Xing Liu +4 位作者 jing Shan Zhuo Xu Zhiming Fang Lu Wang Shengzhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期379-387,I0008,共10页
Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S... Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future. 展开更多
关键词 Strong hetero-interface interaction in 2d/2d WSe_(2)/ZnIn_(2)S_(4) heterostructures for highly-efficient photocatalytic hydrogen generation
下载PDF
Two/Quasi-two-dimensional perovskite-based heterostructures:construction,properties and applications 被引量:4
3
作者 Haizhen Wang Yingying Chen Dehui Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期100-123,共24页
Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exc... Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exciton binding energy,strong nonlinear optical effect,tunable bandgap via changing the layer number or chemical composition,improved environmental stability,and excellent optoelectronic properties.The extensive choice of long organic chains endows 2D/quasi-2D perovskites with tunable electron-phonon coupling strength,chirality,or ferroelectricity properties.In particular,the layered nature of 2D/quasi-2D perovskites allows us to exfoliate them to thin plates to integrate with other materials to form heterostructures,the fundamental structural units for optoelectronic devices,which would greatly extend the functionalities in view of the diversity of 2D/quasi-2D perovskites.In this paper,the recent achievements of 2D/quasi-2D perovskite-based heterostructures are reviewed.First,the structure and physical properties of 2D/quasi-2D perovskites are introduced.We then discuss the construction and characterizations of 2D/quasi-2D perovskite-based heterostructures and highlight the prominent optical properties of the constructed heterostructures.Further,the potential applications of 2D/quasi-2D perovskite-based heterostructures in photovoltaic devices,light emitting devices,photodetectors/phototransistors,and valleytronic devices are demonstrated.Finally,we summarize the current challenges and propose further research directions in the field of 2D/quasi-2D perovskite-based heterostructures. 展开更多
关键词 2d perovskites heterostructureS characterization optical properties applications
下载PDF
Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study 被引量:1
4
作者 Baoxing Zhai Juan Du +2 位作者 Xueping Li Congxin Xia Zhongming Wei 《Journal of Semiconductors》 EI CAS CSCD 2019年第8期92-99,共8页
Since the successful fabrication of two-dimensional (2D) ferromagnetic (FM) monolayer CrI3 and Cr2Ge2Te6, 2D FM materials are becoming an exciting research topic in condensed matter physics and materials fields, as th... Since the successful fabrication of two-dimensional (2D) ferromagnetic (FM) monolayer CrI3 and Cr2Ge2Te6, 2D FM materials are becoming an exciting research topic in condensed matter physics and materials fields, as they provide a good platform to explore the fundamental physical properties of magnetic materials under 2D limit. In this review, we summarize the theoretical research progress of intrinsic 2D FM materials and related van der Waals heterostructures (vdWHs) including their electronic structures, magnetism, Curie temperature, valley polarization, and band alignment. Moreover, we also summarize recent researches on the methods that used to regulate the above properties of 2D FM materials and vdWHs, such as defects, doping, strain, electric field and interlayer coupling. These studies show that 2D FM materials have broad application prospects in spintronics and valleytronics. However, there are still many problems waiting to be solved on the way to practical application. 展开更多
关键词 2d FM materials heterostructure CURIE temperature
下载PDF
Synthesis of two-dimensional/one-dimensional heterostructures with tunable width 被引量:1
5
作者 Di Wang Zucheng Zhang +1 位作者 Bo Li Xidong Duan 《Journal of Semiconductors》 EI CAS CSCD 2021年第9期37-41,共5页
Two-dimensional/one-dimensional(2D/1D)heterostructures as a new type of heterostructure have been studied for their unusual properties and promising applications in electronic and optoelectronic devices.However,the st... Two-dimensional/one-dimensional(2D/1D)heterostructures as a new type of heterostructure have been studied for their unusual properties and promising applications in electronic and optoelectronic devices.However,the studies of 2D/1D heterostructures are mainly focused on vertical heterostructures,such as MoS_(2) nanosheet-carbon nanotubes.The research on lateral 2D/1D heterostructures with a tunable width of 1D material is still scarce.In this study,bidirectional flow chemical vapor deposition(CVD)was used to accurately control the width of the WS_(2)/WSe2(WS_(2)/MoS_(2))heterostructures by controlling reacting time.WSe2 and MoS_(2) with different widths were epitaxially grown at the edge of WS_(2),respectively.Optical microscope,atomic force microscope(AFM),and scanning electron microscope(SEM)images show the morphology and width of the heterostructures.These results show that the width of the heterostructures can be as low as 10 nm by using this method.The interface of the heterostructure is clear and smooth,which is suitable for application.This report offers a new method for the growth of 1D nanowires,and lays the foundation for the future study of the physical and chemical properties of 2D/1D lateral heterostructures. 展开更多
关键词 chemical vapor deposition(CVd) 2d/1d heterostructures width control
下载PDF
Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
6
作者 Haixin Ma Yanhui Xing +3 位作者 Boyao Cui Jun Han Binghui Wang Zhongming Zeng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期231-246,共16页
With the development of Moore's law, the future trend of devices will inevitably be shrinking and integration to further achieve size reduction. The emergence of new two-dimensional non-layered materials(2DNLMs) n... With the development of Moore's law, the future trend of devices will inevitably be shrinking and integration to further achieve size reduction. The emergence of new two-dimensional non-layered materials(2DNLMs) not only enriches the 2D material family to meet future development, but also stimulates the global enthusiasm for basic research and application technologies in the 2D field. Van der Waals(vd W) heterostructures, in which two-dimensional layered materials(2DLMs)are physically stacked layer by layer, can also occur between 2DLMs and 2DNLMs hybrid heterostructures, providing an alternative platform for nanoelectronics and optoelectronic applications. Here, we outline the recent developments of2DLMs/2DNLMs hybrid heterostructures, with particular emphasis on major advances in synthetic methods and applications. And the categories and crystal structures of 2DLMs and 2DNLMs are also shown. We highlight some promising applications of the heterostructures in electronics, optoelectronics, and catalysis. Finally, we provide conclusions and future prospects in the 2D materials field. 展开更多
关键词 2d layered materials 2d non-layered materials van der Waals heterostructure applications
下载PDF
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation 被引量:5
7
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2d/3d van der Waals heterostructures Electromagnetic wave absorption Thermal insulation
下载PDF
Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials 被引量:18
8
作者 Yanping Liu Siyu Zhang +2 位作者 Jun He Zhiming M.Wang Zongwen Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期217-240,共24页
With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of... With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that pro?vides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high?quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of di erent types of 2D heterostruc?tures, followed by the discussions on present challenges and perspectives of further investigations. 展开更多
关键词 two-dimensional(2d) materials 2d heterostructures Charge and magnetotransport Electronic and optoelectronic devices
下载PDF
Lightweight and High-Performance Microwave Absorber Based on 2D WS2-RGO Heterostructures 被引量:14
9
作者 Deqing Zhang Tingting Liu +5 位作者 Junye Cheng Qi Cao Guangping Zheng Shuang Liang Hao Wang MaoSheng Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期21-35,共15页
Two-dimensional(2D)nanomaterials are categorized as a new class of microwave absorption(MA)materials owing to their high specific surface area and peculiar electronic properties.In this study,2D WS2-reduced graphene o... Two-dimensional(2D)nanomaterials are categorized as a new class of microwave absorption(MA)materials owing to their high specific surface area and peculiar electronic properties.In this study,2D WS2-reduced graphene oxide(WS2-rGO)heterostructure nanosheets were synthesized via a facile hydrothermal process;moreover,their dielectric and MA properties were reported for the first time.Remarkably,the maximum reflection loss(RL)of the sample-wax composites containing 40 wt% WS2-rGO was-41.5 dB at a thickness of 2.7 mm;furthermore,the bandwidth where RL<-10 dB can reach up to 13.62 GHz(4.38-18 GHz).Synergistic mechanisms derived from the interfacial dielectric coupling and multiple-interface scattering after hybridization of WS2 with rGO were discussed to explain the drastically enhanced microwave absorption performance.The results indicate these lightweight WS2-rGO nanosheets to be potential materials for practical electromagnetic wave-absorbing applications. 展开更多
关键词 2d WS2 nanosheets Reduced graphene oxide heterostructure Microwave absorption
下载PDF
2D hierarchical yolk-shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries 被引量:6
10
作者 Yanfeng Dong Pengfei Lu +5 位作者 Haodong Shi Jieqiong Qin Jian Chen Wencai Ren Hui-Ming Cheng Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第9期64-73,共10页
Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we devel... Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we developed a novel two-dimensional(2D)hierarchical yolk-shell heterostructure,constructed by a graphene yolk,2D void and outer shell of vertically aligned carbon-mediated MoS2 nanosheets(G@void@MoS2/C),as advanced host-interlayer integrated electrode for Li-S batteries.Notably,the 2D void,with a typical thickness of^80 nm,provided suitable space for loading and confining nano sulfur,and vertically aligned ultrathin MoS2 nanosheets guaranteed enriched catalytically active sites to effectively promote the transition of soluble polysulfides.The conductive graphene yolk and carbon mediated shell sufficiently accelerated electron transport.Therefore,the integrated electrode of G@void@MoS2/C not only exceptionally confined the sulfur/polysulfides in 2D yolk-shell heterostructures,but also achieved catalytic transition of the residual polysulfides dissolved in electrolyte to solid Li2S2/Li2S,both of which synergistically achieved an extremely low capacity fading rate of 0.05%per cycle over 1000 times at 2C,outperforming most reported Mo based cathodes and interlayers for Li-S batteries.2D hierarchical yolkshell heterostructures developed here may shed new insight on elaborated design of integrated electrodes for Li-S batteries. 展开更多
关键词 MoS2 Graphene YOLK SHELL 2d heterostructure Lithium sulfur BATTERIES
下载PDF
Facile fabrication of ZnIn2S4/SnS2 3D heterostructure for efficient visible-light photocatalytic reduction of Cr(Ⅵ) 被引量:4
11
作者 Jingwen Pan Zhongjie Guan +1 位作者 Jianjun Yang Qiuye Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期200-208,共9页
Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalyst... Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability. 展开更多
关键词 ZnIn2S4/SnS2 3d heterostructure Photocatalytic Cr(VI)reduction Visible-light response Charge separation Photocatalytic stability
下载PDF
2D/2D Heterostructures:Rational Design for Advanced Batteries and Electrocatalysis 被引量:2
12
作者 Jun Mei Ting Liao Ziqi Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期115-132,共18页
Two-dimensional/two-dimensional(2D/2D)heterostructures consisting of two or more 2D building blocks possess intriguing electronic features at the nanosized interfacial regions,endowing the possibility for effectively ... Two-dimensional/two-dimensional(2D/2D)heterostructures consisting of two or more 2D building blocks possess intriguing electronic features at the nanosized interfacial regions,endowing the possibility for effectively modulating the confinement,and transport of charge carriers,excitons,photons,phonons,etc.to bring about a wide range of extraordinary physical,chemical,thermal,and/or mechanical properties.By rational design and synthesis of 2D/2D heterostructures,electrochemical properties for advanced batteries and electrocatalysis can be well regulated to meet some practical requirements.In this review,a summary on the commonly employed synthetic strategies for 2D/2D heterostructures is first given,followed by a comprehensive review on recent progress for their applications in batteries and various electrocatalysis reactions.Finally,a critical outlook on the current challenges and promising solutions is presented,which is expected to offer some insightful ideas on the design principles of advanced 2D-based nanomaterials to address the current challenges in sustainable energy storages and green fuel generations. 展开更多
关键词 2d heterostructures 2d nanomaterials BATTERY ELECTROCATALYSIS energy storage
下载PDF
Cryo-induced closely bonded heterostructure for effective CO2 conversion:The case of ultrathin BP nanosheets/g-C3N4 被引量:1
13
作者 Guli Zhou Jinman Yang +8 位作者 Xingwang Zhu Qidi Li Qing Yu Wiam El-alami Chongtai Wang Yuanbin She Junchao Qian Hui Xu Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期89-95,共7页
Black phosphorus(BP),an interesting and multi-functional non-metal material,has attracted widespread attention.In this work,2D BP/2D g-C3N4 heterostructure had been fabricated at extremely low temperature,which was us... Black phosphorus(BP),an interesting and multi-functional non-metal material,has attracted widespread attention.In this work,2D BP/2D g-C3N4 heterostructure had been fabricated at extremely low temperature,which was used to reduce CO2 for the first time.With introduction of 2D BP,the separation of photogenerated holes and electrons was extremely boosted,and composites showed excellent photocatalytic performance(CO2 to CO).Meanwhile,the targeted composite could keep high selectivity for CO generation and CO generation rate can be up to 187.7μmol g−1 h^−1.The formation process of the unique heterostructure and the key factor affecting the photocatalytic performance were also discussed.This work provides a new approach for designing metal free photocatalyst,which is used for CO2 reduction. 展开更多
关键词 2d BP 2d g-C3N4 heterostructure CO2 photoreduction
下载PDF
Multilayered PdTe_(2)/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability 被引量:1
14
作者 Chengyun Dong Xiang An +4 位作者 Zhicheng Wu Zhiguo Zhu Chao Xie Jian-An Huang Linbao Luo 《Journal of Semiconductors》 EI CAS CSCD 2023年第11期42-51,共10页
Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices.Herein,we present the constru... Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices.Herein,we present the construction of a highly efficient flexible light detector operating in the visible-near infrared wavelength regime by integrating a PdTe2 multilayer on a thin Si film.A representative device achieves a good photoresponse performance at zero bias including a sizeable current on/off ratio exceeding 105,a decent responsivity of~343 mA/W,a respectable specific detectivity of~2.56×10^(12)Jones,and a rapid response time of 4.5/379μs,under 730 nm light irradiation.The detector also displays an outstanding long-term air stability and operational durability.In addition,thanks to the excellent flexibility,the device can retain its prominent photodetection performance at various bending radii of curvature and upon hundreds of bending tests.Furthermore,the large responsivity and rapid response speed endow the photodetector with the ability to accurately probe heart rate,suggesting a possible application in the area of flexible and wearable health monitoring. 展开更多
关键词 2d layered material heterostructure FLEXIBLE PHOTOdETECTOR health monitoring
下载PDF
Ultra-high photoresponsive photodetector based on ReS_(2)/SnS_(2)heterostructure
15
作者 王冰辉 邢艳辉 +7 位作者 董晟园 李嘉豪 韩军 涂华垚 雷挺 贺雯馨 张宝顺 曾中明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期545-551,共7页
Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the... Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the heterostructure could improves the response speed of ReS_(2)-based photodetector,but the photodetectors responsivity is reduced greatly,which restricts the development of ReS_(2).In this paper,a vertically structured ReS_(2)/SnS_(2)van der Waals heterostructure photodetectors is prepared,using ReS_(2)as the transport layer and SnS_(2)as the light absorbing layer to regulate the channel current.The device has an ultra-high photoconductive gain of 10^(10),which exhibits an ultra-high responsivity of4706 A/W under 365-nm illumination and response speed in seconds,and has an ultra-high external quantum efficiency of1.602×10^(6)%and a high detectivity of 5.29×10^(12)jones.The study for ReS_(2)-based photodetector displays great potential for developing future optoelectronic devices. 展开更多
关键词 two-dimensional material ReS_(2) heterostructure PHOTOdETECTOR
下载PDF
The 2D InSe/WS2 Heterostructure with Enhanced Optoelectronic Performance in the Visible Region
16
作者 Lu-Lu Yang Jun-Jie Shi +8 位作者 Min Zhang Zhong-Ming Wei Yi-Min Ding Meng Wu Yong He Yu-Lang Cen Wen-Hui Guo Shu-Hang Pan Yao-Hui Zhu 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第9期41-45,共5页
Two-dimensional(2D)InSe and WS2 exhibit promising characteristics for optoelectronic applications.However,they both have poor absorption of visible light due to wide bandgaps:2D InSe has high electron mobility but low... Two-dimensional(2D)InSe and WS2 exhibit promising characteristics for optoelectronic applications.However,they both have poor absorption of visible light due to wide bandgaps:2D InSe has high electron mobility but low hole mobility,while 2D WS2 is on the contrary.We propose a 2D heterostructure composed of their monolayers as a solution to both problems.Our first-principles calculations show that the heterostructure has a type-Ⅱband alignment as expected.Consequently,the bandgap of the heterostructure is reduced to 2.19 eV,which is much smaller than those of the monolayers.The reduction in bandgap leads to a considerable enhancement of the visible-light absorption,such as about fivefold(threefold)increase in comparison to monolayer InSe(WS2)at the wavelength of 490 nm.Meanwhile,the type-Ⅱ band alignment also facilitates the spatial separation of photogenerated electron-hole pairs;i.e.,electrons(holes)reside preferably in the InSe(WS2)layer.As a result,the two layers complement each other in carrier mobilities of the heterostructure:the photogenerated electrons and holes inherit the large mobilities from the InSe and WS2 monolayers,respectively. 展开更多
关键词 Se CBM The 2d InSe/WS2 heterostructure with ENHANCEd OPTOELECTRONIC PERFORMANCE in the Visible Region
下载PDF
Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg–de Vries equation
17
作者 Yulei Cao Peng-Yan Hu +1 位作者 Yi Cheng Jingsong He 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期205-214,共10页
Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an a... Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems. 展开更多
关键词 two-dimensional(2d)Korteweg-de Vries(KdV)equation Bilinear method Backlund transformation Lax pair deformed 2d rogue wave
下载PDF
Origin of itinerant ferromagnetism in two-dimensional Fe_(3)GeTe_(2)
18
作者 Xi Chen Zheng-Zhe Lin Li-Rong Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期119-124,共6页
Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and ... Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_(3),Cr_(2) Ge_(2) Te_(6),and Fe_(3)GeTe_(2) opens up a new chapter in the remarkable field of two-dimensional materials.Here,we report on a theoretical analysis of the stability of ferromagnetism in Fe_(3)GeTe_(2).We uncover the mechanism of holding long-range magnetic order and propose a model to estimate the Curie temperature of Fe_(3)GeTe_(2).Our results reveal the essential role of magnetic anisotropy in maintaining the magnetic order of two-dimensional systems.The theoretical method used here can be generalized to future research of other magnetic two-dimensional systems. 展开更多
关键词 two-dimensional(2d)ferromagnetism spin wave magnetic anisotropy
下载PDF
Two-dimensional hexagonal Zn3Si2 monolayer:Dirac cone material and Dirac half-metallic manipulation
19
作者 Yurou Guan Lingling Song +4 位作者 Hui Zhao Renjun Du Liming Liu Cuixia Yan Jinming Cai 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期418-423,共6页
The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional the... The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional theory method,a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted.The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions.Importantly,the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV,which has an intrinsic Dirac cone arising from the special hexagonal lattice structure.Hole doping leads to the spin polarization of the electron,which results in a Dirac half-metal feature with single-spin Dirac fermion.This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics. 展开更多
关键词 two-dimensional(2d)dirac cone material dirac half-metal first-principles calculation spin-orbit coupling
下载PDF
Magnetic and electronic properties of bulk and two-dimensional FeBi_(2)Te_(4):A first-principles study
20
作者 王倩倩 赵建洲 +4 位作者 吴维康 周胤宁 Qile Li Mark T.Edmonds 杨声远 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期450-456,共7页
Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostruct... Layered magnetic materials,such as MnBi_(2)Te_(4),have drawn much attention owing to their potential for realizing twodimensional(2D)magnetism and possible topological states.Recently,FeBi_(2)Te_(4),which is isostructural to MnBi_(2)Te_(4),has been synthesized in experiments,but its detailed magnetic ordering and band topology have not been clearly understood yet.Here,based on first-principles calculations,we investigate the magnetic and electronic properties of FeBi_(2)Te_(4)in bulk and 2D forms.We show that different from MnBi_(2)Te_(4),the magnetic ground states of bulk,single-layer,and bilayer FeBi_(2)Te_(4)all favor a 120°noncollinear antiferromagnetic ordering,and they are topologically trivial narrow-gap semiconductors.For the bilayer case,we find that a quantum anomalous Hall effect with a unit Chern number is realized in the ferromagnetic state,which may be achieved in experiment by an external magnetic field or by magnetic proximity coupling.Our work clarifies the physical properties of the new material system of FeBi_(2)Te_(4)and reveals it as a potential platform for studying magnetic frustration down to 2D limit as well as quantum anomalous Hall effect. 展开更多
关键词 FeBi_(2)Te_(4) two-dimensional(2d)magnetism noncollinear antiferromagnet quantum anomalous Hall effect first-principles calculation
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部