The development of strain sensors with both superior sensitivity(gauge factor(GF)>100)and broad strain-sensing range(>50%strain)is still a grand challenge.Materials,which demonstrate significant structural defor...The development of strain sensors with both superior sensitivity(gauge factor(GF)>100)and broad strain-sensing range(>50%strain)is still a grand challenge.Materials,which demonstrate significant structural deformation under microscale motion,are required to offer high sensitivity.Structural connection of materials upon large-scale motion is demanded to widen strainsensing range.However,it is hard to achieve both features simultaneously.Herein,we design a crepe roll structure-inspired textile yarn-based strain sensor with one-dimensional(1D)-two-dimensional(2D)nanohybrid strain-sensing sheath,which possesses superior stretchability.This ultrastretchable strain sensor exhibits a wide and stable strain-sensing range from microscale to large-scale(0.01%–125%),and superior sensitivity(GF of 139.6 and 198.8 at 0.01%and 125%,respectively)simultaneously.The strain sensor is structurally constructed by a superelastic 1D-structured core elastomer polyurethane yarn(PUY),a novel high conductive crepe roll-structured(CRS)1D-2D nanohybrid multilayer sheath which assembled by 1D nanomaterials silver nanowires(AgNWs)working as bridges to connect adjacent layers and 2D nanomaterials graphene nanoplates(GNPs)offering brittle lamellar structure,and a thin polydopamine(PDA)wrapping layer providing protection in exterior environment.During the stretching/deformation process,microcracks originate and propagate in the GNPs lamellar structure enable resistance to change significantly,while AgNWs bridge adjacent GNPs to accommodate applied stress partially and boost strain.The 1D crepe roll structure-inspired strain sensor demonstrates multifunctionality in multiscale deformative motion detection,such as respiratory motions of Sprague–Dawleyw rat,flexible digital display,and proprioception of multi-joint finger bending and antagonistic flexion/extension motions of its flexible continuum body.展开更多
Nanomaterials integrated surface acoustic wave(SAW)gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety.However,the developm...Nanomaterials integrated surface acoustic wave(SAW)gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety.However,the development of novel chemical interface based on two-dimensional(2D)sensing materials for SAW sensors for the rapid and sensitive detection of NH_(3)gas at room temperature(RT)still remains challenging.Herein,we report a highly selective RT NH_(3)gas sensor based on sulfur-doped graphitic carbon nitride quantum dots(S@g-C_(3)N_(4)QD)coated langasite(LGS)SAW sensor with enhanced sensitivity and recovery rate under ultraviolet(UV)illumination.Fascinatingly,the sensitivity of the S@g-C_(3)N_(4)QD/LGS SAW sensor to NH_(3)(500 ppb)at RT is dramatically enhanced by~4.5-fold with a low detection limit(~85 ppb),high selectivity,excellent reproducibility,fast response/recovery time(70 s/79 s)under UV activation(365 nm)as compared to dark condition.Additionally,the proposed sensor exhibited augmented NH_(3)detection capability across the broad range of relative humidity(20%–80%).Such remarkable gas sensing performances of the as-prepared sensor to NH_(3)are attributed to the high surface area,enhanced functional groups,sulfur defects,UV photogenerated charge carriers,facile charge transfer in the S@g-C_(3)N_(4)QD sensing layer,which further helps to improve the gas molecules adsorption that causes the increase in conductivity,resulting in larger frequency responses.The gas sensing mechanism of S@g-C_(3)N_(4)QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect,which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies.We envisage that the present work paves a promising strategy to develop the next generation 2D g-C_(3)N_(4)based high responsive RT SAW gas sensors.展开更多
The assembly of thin films (TFs) having long-lasting luminescence can be expected to play an important role in the development of new-generation smart sensors, anti-counterfeiting materials, and information-encrypti...The assembly of thin films (TFs) having long-lasting luminescence can be expected to play an important role in the development of new-generation smart sensors, anti-counterfeiting materials, and information-encryption systems. However, such films are limited compared with their powder and solution counterparts. In this study, by exploiting the self-organization of phosphors in the two-dimensional (2D) galleries between clay nanosheets, we developed a method for the ordered assembly of long-afterglow TFs by utilizing a hydrogen-bonding layer-by-layer (LBL) process. Compared with the pristine powder, the TFs exhibit high polarization and up-conversion room-temperature phosphorescence (RTP), as well as enhanced quantum yields and luminescence lifetimes, allowing them to be used as room-temperature phosphorescent sensors for humidity and oxygen. Moreover, modified clay-based hybrids with multicolor RTP can serve as anti-counterfeiting marks and triple-mode 2D barcode displays. We anticipate that the LBL assembly process can be extended to the fabrication of other inorganic--organic room-temperature phosphorescent hybrids with smart luminescent sensor and antiforgery applications.展开更多
基金the TBRS grant from the Research Grant Council of the Hong Kong Special Administrative Region Government(T42-717/20-R)the City University research grant(CityU11206818).
文摘The development of strain sensors with both superior sensitivity(gauge factor(GF)>100)and broad strain-sensing range(>50%strain)is still a grand challenge.Materials,which demonstrate significant structural deformation under microscale motion,are required to offer high sensitivity.Structural connection of materials upon large-scale motion is demanded to widen strainsensing range.However,it is hard to achieve both features simultaneously.Herein,we design a crepe roll structure-inspired textile yarn-based strain sensor with one-dimensional(1D)-two-dimensional(2D)nanohybrid strain-sensing sheath,which possesses superior stretchability.This ultrastretchable strain sensor exhibits a wide and stable strain-sensing range from microscale to large-scale(0.01%–125%),and superior sensitivity(GF of 139.6 and 198.8 at 0.01%and 125%,respectively)simultaneously.The strain sensor is structurally constructed by a superelastic 1D-structured core elastomer polyurethane yarn(PUY),a novel high conductive crepe roll-structured(CRS)1D-2D nanohybrid multilayer sheath which assembled by 1D nanomaterials silver nanowires(AgNWs)working as bridges to connect adjacent layers and 2D nanomaterials graphene nanoplates(GNPs)offering brittle lamellar structure,and a thin polydopamine(PDA)wrapping layer providing protection in exterior environment.During the stretching/deformation process,microcracks originate and propagate in the GNPs lamellar structure enable resistance to change significantly,while AgNWs bridge adjacent GNPs to accommodate applied stress partially and boost strain.The 1D crepe roll structure-inspired strain sensor demonstrates multifunctionality in multiscale deformative motion detection,such as respiratory motions of Sprague–Dawleyw rat,flexible digital display,and proprioception of multi-joint finger bending and antagonistic flexion/extension motions of its flexible continuum body.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2020R1A2C2013385)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.NRF-2020R1A6A1A03047771)Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET),Korea Smart Farm Research and Development Foundation(KosFarm)through Smart Farm Innovation Technology Development Program,funded by Ministry of Agriculture,Food,and Rural Affairs(MAFRA)and Ministry of Science and ICT(MSIT),Rural Development Administration(RDA)(No.421029-4).
文摘Nanomaterials integrated surface acoustic wave(SAW)gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety.However,the development of novel chemical interface based on two-dimensional(2D)sensing materials for SAW sensors for the rapid and sensitive detection of NH_(3)gas at room temperature(RT)still remains challenging.Herein,we report a highly selective RT NH_(3)gas sensor based on sulfur-doped graphitic carbon nitride quantum dots(S@g-C_(3)N_(4)QD)coated langasite(LGS)SAW sensor with enhanced sensitivity and recovery rate under ultraviolet(UV)illumination.Fascinatingly,the sensitivity of the S@g-C_(3)N_(4)QD/LGS SAW sensor to NH_(3)(500 ppb)at RT is dramatically enhanced by~4.5-fold with a low detection limit(~85 ppb),high selectivity,excellent reproducibility,fast response/recovery time(70 s/79 s)under UV activation(365 nm)as compared to dark condition.Additionally,the proposed sensor exhibited augmented NH_(3)detection capability across the broad range of relative humidity(20%–80%).Such remarkable gas sensing performances of the as-prepared sensor to NH_(3)are attributed to the high surface area,enhanced functional groups,sulfur defects,UV photogenerated charge carriers,facile charge transfer in the S@g-C_(3)N_(4)QD sensing layer,which further helps to improve the gas molecules adsorption that causes the increase in conductivity,resulting in larger frequency responses.The gas sensing mechanism of S@g-C_(3)N_(4)QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect,which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies.We envisage that the present work paves a promising strategy to develop the next generation 2D g-C_(3)N_(4)based high responsive RT SAW gas sensors.
基金Acknowledgements This work was supported by the National Basic Research Program of China (973 Program) (No. 2014CB932103), the National Natural Science Foundation of China (Nos. 21301016 and 21473013), the Beijing Municipal Natural Science Foundation (No. 2152016), and the Fundamental Research Funds for the Central Universities.
文摘The assembly of thin films (TFs) having long-lasting luminescence can be expected to play an important role in the development of new-generation smart sensors, anti-counterfeiting materials, and information-encryption systems. However, such films are limited compared with their powder and solution counterparts. In this study, by exploiting the self-organization of phosphors in the two-dimensional (2D) galleries between clay nanosheets, we developed a method for the ordered assembly of long-afterglow TFs by utilizing a hydrogen-bonding layer-by-layer (LBL) process. Compared with the pristine powder, the TFs exhibit high polarization and up-conversion room-temperature phosphorescence (RTP), as well as enhanced quantum yields and luminescence lifetimes, allowing them to be used as room-temperature phosphorescent sensors for humidity and oxygen. Moreover, modified clay-based hybrids with multicolor RTP can serve as anti-counterfeiting marks and triple-mode 2D barcode displays. We anticipate that the LBL assembly process can be extended to the fabrication of other inorganic--organic room-temperature phosphorescent hybrids with smart luminescent sensor and antiforgery applications.