期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An LMI Method to Robust Iterative Learning Fault-tolerant Guaranteed Cost Control for Batch Processes 被引量:11
1
作者 王立敏 陈曦 高福荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期401-411,共11页
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w... Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach. 展开更多
关键词 迭代学习控制 保成本控制 LMI方法 鲁棒跟踪 间歇过程 容错 执行器故障 线性矩阵不等式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部