A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional G...A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively, and introduce the coupling effect coming from both fluctuations and equilibrium variances. The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived, based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique. We explicitly elaborate the short time and long time approximations. The relationship between the two-diraensional description and the one-dimensional theory is also discussed.展开更多
This paper derives a mathematical description of the complex stretch processor’s response to bandlimited Gaussian noise having arbitrary center frequency and bandwidth. The description of the complex stretch processo...This paper derives a mathematical description of the complex stretch processor’s response to bandlimited Gaussian noise having arbitrary center frequency and bandwidth. The description of the complex stretch processor’s random output comprises highly accurate closed-form approximations for the probability density function and the autocorrelation function. The solution supports the complex stretch processor’s usage of any conventional range-sidelobe-reduction window. The paper then identifies two practical applications of the derived description. Digital-simulation results for the two identified applications, assuming the complex stretch processor uses the rectangular, Hamming, Blackman, or Kaiser window, verify the derivation’s correctness through favorable comparison to the theoretically predicted behavior.展开更多
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar...Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats.展开更多
Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak t...Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak time dependence, one may desire to estimate the present-time value of the field using a time window of data that rolls forward as new data become available, leading to a sequence of solution updates. We introduce “rolling GPR” (or moving window GPR) and present a procedure for implementing that is more computationally efficient than solving the full GPR problem at each update. Furthermore, regime shifts (sudden large changes in the field) can be detected by monitoring the change in posterior covariance of the predicted data during the updates, and their detrimental effect is mitigated by shortening the time window as the variance rises, and then decreasing it as it falls (but within prior bounds). A set of numerical experiments is provided that demonstrates the viability of the procedure.展开更多
高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问...高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法。在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估。实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R 2这4个评估指标方面均有提升,其中MBE至少提升了43.3%。展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20973119 and No.21033008).
文摘A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively, and introduce the coupling effect coming from both fluctuations and equilibrium variances. The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived, based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique. We explicitly elaborate the short time and long time approximations. The relationship between the two-diraensional description and the one-dimensional theory is also discussed.
文摘This paper derives a mathematical description of the complex stretch processor’s response to bandlimited Gaussian noise having arbitrary center frequency and bandwidth. The description of the complex stretch processor’s random output comprises highly accurate closed-form approximations for the probability density function and the autocorrelation function. The solution supports the complex stretch processor’s usage of any conventional range-sidelobe-reduction window. The paper then identifies two practical applications of the derived description. Digital-simulation results for the two identified applications, assuming the complex stretch processor uses the rectangular, Hamming, Blackman, or Kaiser window, verify the derivation’s correctness through favorable comparison to the theoretically predicted behavior.
基金This researchwork is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R411),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats.
文摘Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak time dependence, one may desire to estimate the present-time value of the field using a time window of data that rolls forward as new data become available, leading to a sequence of solution updates. We introduce “rolling GPR” (or moving window GPR) and present a procedure for implementing that is more computationally efficient than solving the full GPR problem at each update. Furthermore, regime shifts (sudden large changes in the field) can be detected by monitoring the change in posterior covariance of the predicted data during the updates, and their detrimental effect is mitigated by shortening the time window as the variance rises, and then decreasing it as it falls (but within prior bounds). A set of numerical experiments is provided that demonstrates the viability of the procedure.
文摘高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法。在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估。实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R 2这4个评估指标方面均有提升,其中MBE至少提升了43.3%。