Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existen...Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.展开更多
To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) ...To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) (PMDA-ODA)/silica nanocomposite was investigated by two-dimensional ATR-FTIR spectroscopy, by which three states of water molecules owning different H-bonding strength were distinguished. The amounts and strength of H-bonding also played a significant role in determining the diffusion rate of the different states of water molecules. The type of aggregated water molecules which also formed H-bonding with silicic acid (residues) or polyimide system was the last one diffusing to the polymer side in contact with the ATR crystal element because the polymeric matrix blocked their diffusion to a great extent. The diffusion coefficient was also estimated to gain the information of the dynamic diffusion behavior.展开更多
To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonli...To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.展开更多
Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropi...Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.展开更多
Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors ha...Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors have begun to appear in the market. Therefore, it is an urgent need for new techniques to discriminate the genuine and counterfeit Moutai liquor. In this work, the conventional Ultraviolet-Visible (UV-Vis) spectroscopy and two-dimensional correlation UV-Vis spectroscopy are applied to obtain the UV-Vis characteristic of Moutai liquor and counterfeit one, respectively. The experimental results reveal that the conventional UV-Vis spectra of the genuine and counterfeit Moutai liquor are similar. However, the two-dimensional correlation UV-Vis spectra of them are different and this method would be applied to differentiate the counterfeit Moutai liquor from the genuine Moutai liquor. Compared with conventional methods, this novel method has the advantages of easy operation, simple instrumentation and direct recognition, which make it a potential tool in the fields of food safety.展开更多
Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides...Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.展开更多
A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system...A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.展开更多
Ultrathin van der Waals(vdW)magnets provide a possibility to access magnetic ordering in the two-dimensional(2D)limit,which are expected to be applied in the spintronic devices.Raman spectroscopy is a powerful charact...Ultrathin van der Waals(vdW)magnets provide a possibility to access magnetic ordering in the two-dimensional(2D)limit,which are expected to be applied in the spintronic devices.Raman spectroscopy is a powerful characterization method to investigate the spin-related properties in 2D vdW magnets,including magnon and spin–lattice interaction,which are hardly accessible by other optical methods.In this paper,the recent progress of various magnetic properties in 2D vdW magnets studied by Raman spectroscopy is reviewed,including the magnetic transition,spin-wave,spin–lattice interaction,symmetry tuning induced by spin ordering,and nonreciprocal magneto-phonon Raman scattering.展开更多
Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,...Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs.展开更多
Surface-enhanced Raman spectroscopy(SERS) based on two-dimensional(2 D) materials has attracted great attention over the past decade. Compared with metallic materials, which enhance Raman signals via the surface plasm...Surface-enhanced Raman spectroscopy(SERS) based on two-dimensional(2 D) materials has attracted great attention over the past decade. Compared with metallic materials, which enhance Raman signals via the surface plasmon effect, 2 D materials integrated on silicon substrates are ideal for use in the fabrication of plasmon-free SERS chips, with the advantages of outstanding fluorescence quenching capability, excellent biomolecular compatibility, tunable Fermi levels, and potentially lowcost material preparation. Moreover, recent studies have shown that the limits of detection of 2 D-material-based SERS may be comparable with those of metallic substrates, which has aroused significant research interest. In this review, we comprehensively summarize the advances in SERS chips based on 2 D materials. As several excellent reviews of graphene-enhanced Raman spectroscopy have been published in the past decade, here, we focus only on 2 D materials beyond graphene, i.e., transition metal dichalcogenides, black phosphorus, hexagonal boron nitride, 2 D titanium carbide or nitride, and their heterostructures. We hope that this paper can serve as a useful reference for researchers specializing in 2 D materials, spectroscopy, and diverse applications related to chemical and biological sensing.展开更多
A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensi...A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.展开更多
Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t chall...Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t challenging par t for experimen tal demonstration of 2DES.Here,we present a tuto rial review on the 2DES proto cols based on active phase managements which are originally developed for quantum optics experiments.We introduce the 2DES techniques in box and pump-probe geometries with phase stabilization realized by interferometry,and outline the fully collinear 2DES approach with the frequency tagging by acoustic optical modulators and frequency combs.The combination of active phase managements,ultrashort pulses and other spectroscopic methods may open new opportunities to tackle essential challenges related to excited states.展开更多
A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including...A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.展开更多
Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physic...Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physics,including excitonic coherence dynamics,exciton many-body interactions,and their optical properties,faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects.In this perspective,we elaborate upon how optical two-dimensional coherent spectroscopy(2DCS)emerges as an effective tool to tackle the challenges,and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.展开更多
Research on two-dimensional(2D) materials and related van der Waals heterostructures(vdWHs) is intense and remains one of the leading topics in condensed matter physics.Lattice vibrations or phonons of a vdWH provide ...Research on two-dimensional(2D) materials and related van der Waals heterostructures(vdWHs) is intense and remains one of the leading topics in condensed matter physics.Lattice vibrations or phonons of a vdWH provide rich information,such as lattice structure,phonon dispersion,electronic band structure and electron–phonon coupling.Here,we provide a mini review on the lattice vibrations in vdWHs probed by Raman spectroscopy.First,we introduced different kinds of vdWHs,including their structures,properties and potential applications.Second,we discussed interlayer and intralayer phonon in twist multilayer graphene and MoS2.The frequencies of interlayer and intralayer modes can be reproduced by linear chain model(LCM)and phonon folding induced by periodical moiré potentials,respectively.Then,we extended LCM to vdWHs formed by distinct 2D materials,such as MoS2/graphene and hBN/WS2 heterostructures.We further demonstrated how to calculate Raman intensity of interlayer modes in vdWHs by interlayer polarizability model.展开更多
D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated si...D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization methods)have been proposed successively,but most are limited to numerical simulations.This study focused on the applicability of different inversion methods for NMR logging data of various acquisition sequences,from which the optimal inversion method was selected based on the comparative analysis.First,the two-dimensional NMR logging principle was studied.Then,these inversion methods were studied in detail,and the precision and computational efficiency of CPMG and diffusion editing(DE)sequences obtained from oil-water and gas-water models were compared,respectively.The inversion results and calculation time of truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization were compared and analyzed through numerical simulations.The inversion method was optimized to process SP mode logging data from the MR Scanner instrument.The results showed that the TIST-regularization and LM-norm smoothing methods were more accurate for the CPMG and DE sequence echo trains of the oil-water and gas-water models.However,the LM-norm smoothing method was less time-consuming,making it more suitable for logging data processing.A case study in well A25 showed that the processing results by the LM-norm smoothing method were consistent with GEOLOG software.This demonstrates that the LM-norm smoothing method is applicable in practical NMR logging processing.展开更多
Proton NMR-spectra of Wang resin bound compounds were obtained using the magic angle spinning 1HNMR technique with standard equipment. It was possible to analyse the spectra to evaluate their utility in solid-phase ch...Proton NMR-spectra of Wang resin bound compounds were obtained using the magic angle spinning 1HNMR technique with standard equipment. It was possible to analyse the spectra to evaluate their utility in solid-phase chernistry. A typical example was presented, which could directly monitor solid-phase reactions展开更多
A series of ethylene-norbornene copolymers were synthesized using VO (Oft) Cl-2/Al2Et3Cl3 catalytic system and their structure was characterized by H-1-NMR, H-1-H-1 COSY NMR and C-13-NMR. Assignments of NMR spectra we...A series of ethylene-norbornene copolymers were synthesized using VO (Oft) Cl-2/Al2Et3Cl3 catalytic system and their structure was characterized by H-1-NMR, H-1-H-1 COSY NMR and C-13-NMR. Assignments of NMR spectra were given and discussed in detail.展开更多
基金supported by the National Natural Science Foundation of China(41872174 and 42072189)the Program for Innovative Research Team(in Science and Technology)in the Universities of Henan Province,China(21IRTSTHN007)the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(T2020-4)。
文摘Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.
基金supported by the National Natural Science Foundation of China(No.20573022,No.20425415)the National Basic Research Pro-gram of China(2005CB623800),the PHD Program of M0E(20050246010)the"Qimingxing"Project(No.04QM1402)of Shanghai Municipal Science and Technology Commission,and the"Shuguang"Project(No.01SG05)of the Shanghai Municipal Education Commission and Shanghai Education Development Foundation.
文摘To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) (PMDA-ODA)/silica nanocomposite was investigated by two-dimensional ATR-FTIR spectroscopy, by which three states of water molecules owning different H-bonding strength were distinguished. The amounts and strength of H-bonding also played a significant role in determining the diffusion rate of the different states of water molecules. The type of aggregated water molecules which also formed H-bonding with silicic acid (residues) or polyimide system was the last one diffusing to the polymer side in contact with the ATR crystal element because the polymeric matrix blocked their diffusion to a great extent. The diffusion coefficient was also estimated to gain the information of the dynamic diffusion behavior.
基金This work was supported by the National Natural Science Foundation of China (No.21033008 and No.21073169)the National Basic Research Program of China (No.2010CB923300 and No.2011CB921400)and the Hong Kong RGC (No.604709) and UGC (AoE/P04/08-2) is gratefully acknowledged.
文摘To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0301204)the National Natural Science Foundation of China(Grant Nos.11604326,11434010,11474277,and 11225421)
文摘Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.
文摘Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors have begun to appear in the market. Therefore, it is an urgent need for new techniques to discriminate the genuine and counterfeit Moutai liquor. In this work, the conventional Ultraviolet-Visible (UV-Vis) spectroscopy and two-dimensional correlation UV-Vis spectroscopy are applied to obtain the UV-Vis characteristic of Moutai liquor and counterfeit one, respectively. The experimental results reveal that the conventional UV-Vis spectra of the genuine and counterfeit Moutai liquor are similar. However, the two-dimensional correlation UV-Vis spectra of them are different and this method would be applied to differentiate the counterfeit Moutai liquor from the genuine Moutai liquor. Compared with conventional methods, this novel method has the advantages of easy operation, simple instrumentation and direct recognition, which make it a potential tool in the fields of food safety.
基金the National Natural Science Foundation of China(No.91753118 and No.21773012)the Fundamental Research Funds for Central Universities。
文摘Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.
基金This work was supported by the Foundation of Education Committee of Fujian Province (K02028, JB04049), the State Key Laboratory of Structural Chemistry, and Science and Technology Foundation of Fuzhou University
文摘A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.
基金Project supported by Beijing Natural Science Foundation,China(Grant No.JQ18014)the National Natural Science Foundation of China(Grant No.12074371)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000),and CAS Interdisciplinary Innovation Team.
文摘Ultrathin van der Waals(vdW)magnets provide a possibility to access magnetic ordering in the two-dimensional(2D)limit,which are expected to be applied in the spintronic devices.Raman spectroscopy is a powerful characterization method to investigate the spin-related properties in 2D vdW magnets,including magnon and spin–lattice interaction,which are hardly accessible by other optical methods.In this paper,the recent progress of various magnetic properties in 2D vdW magnets studied by Raman spectroscopy is reviewed,including the magnetic transition,spin-wave,spin–lattice interaction,symmetry tuning induced by spin ordering,and nonreciprocal magneto-phonon Raman scattering.
基金the Basic Research Project(C123000,C210200,C310200,&C421000)of the Korea Basic Science Institute(KBSI)funded by the Korea Ministry of Science and ICT(MSIT)the Technology Development Program to Solve Climate Changes through the National Research Foundation of Korea(NRF)funded by MSIT(NRF-2021M1A2A2038141).O.H.Han thanks to Prof.I.S.Yang at Ewha Womans University for insightful discussion.
文摘Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs.
基金supported by the National Natural Science Foundation of China (61805175)the Promotion of Science (JP18K13798)China Postdoctoral Sci-ence Foundation (2020M670641)。
文摘Surface-enhanced Raman spectroscopy(SERS) based on two-dimensional(2 D) materials has attracted great attention over the past decade. Compared with metallic materials, which enhance Raman signals via the surface plasmon effect, 2 D materials integrated on silicon substrates are ideal for use in the fabrication of plasmon-free SERS chips, with the advantages of outstanding fluorescence quenching capability, excellent biomolecular compatibility, tunable Fermi levels, and potentially lowcost material preparation. Moreover, recent studies have shown that the limits of detection of 2 D-material-based SERS may be comparable with those of metallic substrates, which has aroused significant research interest. In this review, we comprehensively summarize the advances in SERS chips based on 2 D materials. As several excellent reviews of graphene-enhanced Raman spectroscopy have been published in the past decade, here, we focus only on 2 D materials beyond graphene, i.e., transition metal dichalcogenides, black phosphorus, hexagonal boron nitride, 2 D titanium carbide or nitride, and their heterostructures. We hope that this paper can serve as a useful reference for researchers specializing in 2 D materials, spectroscopy, and diverse applications related to chemical and biological sensing.
文摘A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.
基金This work is supported by the National Key R&D Program of China(No.2017YFA0303700 and No.2018YFA0209101)the National Natural Science Foundation of China(No.21922302,No.21873047,No.11904168,No.91833305,and No.91850105)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central University.
文摘Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t challenging par t for experimen tal demonstration of 2DES.Here,we present a tuto rial review on the 2DES proto cols based on active phase managements which are originally developed for quantum optics experiments.We introduce the 2DES techniques in box and pump-probe geometries with phase stabilization realized by interferometry,and outline the fully collinear 2DES approach with the frequency tagging by acoustic optical modulators and frequency combs.The combination of active phase managements,ultrashort pulses and other spectroscopic methods may open new opportunities to tackle essential challenges related to excited states.
文摘A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.
基金S.Y.and X.L.acknowledge the support from the National Natural Science Foundation of China(Grant Nos.12121004 and 12004391)the China Postdoctoral Science Foundation(Grants Nos.2020T130682 and 2019M662752)+6 种基金the Science and Technology Department of Hubei Province(Grant No.2020CFA029)the Knowledge Innovation Program of Wuhan-Shuguang Project.T.J.acknowledges the support from the National Natural Science Foundation of China(Grant Nos.62175188 and 62005198)the Shanghai Science and Technology Innovation Action Plan Project(Grant No.23ZR1465800)X.C.acknowledges support from the National Natural Science Foundation of China(Grant Nos.61925504,62020106009,and 6201101335)Science and Technology Commission of Shanghai Municipality(Grant Nos.17JC1400800,20JC1414600,and 21JC1406100)the Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone(Grant No.ZJ2021-ZD-008)D.H.acknowledges the support from the Fundamental Research Funds for the Central Universities.
文摘Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physics,including excitonic coherence dynamics,exciton many-body interactions,and their optical properties,faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects.In this perspective,we elaborate upon how optical two-dimensional coherent spectroscopy(2DCS)emerges as an effective tool to tackle the challenges,and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.
基金the National Key Research and Development Program of China (Grant No.2016YFA0301204)the National Natural Science Foundation of China (Grant Nos.11874350 and 11434010)
文摘Research on two-dimensional(2D) materials and related van der Waals heterostructures(vdWHs) is intense and remains one of the leading topics in condensed matter physics.Lattice vibrations or phonons of a vdWH provide rich information,such as lattice structure,phonon dispersion,electronic band structure and electron–phonon coupling.Here,we provide a mini review on the lattice vibrations in vdWHs probed by Raman spectroscopy.First,we introduced different kinds of vdWHs,including their structures,properties and potential applications.Second,we discussed interlayer and intralayer phonon in twist multilayer graphene and MoS2.The frequencies of interlayer and intralayer modes can be reproduced by linear chain model(LCM)and phonon folding induced by periodical moiré potentials,respectively.Then,we extended LCM to vdWHs formed by distinct 2D materials,such as MoS2/graphene and hBN/WS2 heterostructures.We further demonstrated how to calculate Raman intensity of interlayer modes in vdWHs by interlayer polarizability model.
基金sponsored by the National Natural Science Foundation of China(Nos.42174149,41774144)the National Major Projects(No.2016ZX05014-001).
文摘D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization methods)have been proposed successively,but most are limited to numerical simulations.This study focused on the applicability of different inversion methods for NMR logging data of various acquisition sequences,from which the optimal inversion method was selected based on the comparative analysis.First,the two-dimensional NMR logging principle was studied.Then,these inversion methods were studied in detail,and the precision and computational efficiency of CPMG and diffusion editing(DE)sequences obtained from oil-water and gas-water models were compared,respectively.The inversion results and calculation time of truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization were compared and analyzed through numerical simulations.The inversion method was optimized to process SP mode logging data from the MR Scanner instrument.The results showed that the TIST-regularization and LM-norm smoothing methods were more accurate for the CPMG and DE sequence echo trains of the oil-water and gas-water models.However,the LM-norm smoothing method was less time-consuming,making it more suitable for logging data processing.A case study in well A25 showed that the processing results by the LM-norm smoothing method were consistent with GEOLOG software.This demonstrates that the LM-norm smoothing method is applicable in practical NMR logging processing.
文摘Proton NMR-spectra of Wang resin bound compounds were obtained using the magic angle spinning 1HNMR technique with standard equipment. It was possible to analyse the spectra to evaluate their utility in solid-phase chernistry. A typical example was presented, which could directly monitor solid-phase reactions
文摘A series of ethylene-norbornene copolymers were synthesized using VO (Oft) Cl-2/Al2Et3Cl3 catalytic system and their structure was characterized by H-1-NMR, H-1-H-1 COSY NMR and C-13-NMR. Assignments of NMR spectra were given and discussed in detail.