A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of...A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of the free stream Mach number, the total pressure recovery decreases, while the mass flow ratio increases to the maximum at the design point and then decreases; (2) when the angle of attack, a, is less than 6°, the total pressure recovery of both side inlets tends to decrease, but, on the lee side inlet, its values are higher than those on the windward side inlet, and the mass flow ratio on lee side inlet increases first and then falls, while on the windward side it keeps declining slowly with the sum of mass flow on both sides remaining almost constant; (3) with the attack angle, a, rising from 6° to 9°, both total pressure recovery and mass flow ratio on the lee side inlet fall quickly, but on the windward side inlet can be observed decreases in the total pressure recovery and increases in the mass flow ratio; (4) by comparing the velocity and back pressure characterristics of the inlet with a bleed slot to those of the inlet without, it stands to reason that the existence of a bleed slot has not only widened the steady working range of inlet, but also made an enormous improvement in its performance at high Mach numbers. Besides, this paper also presents an example to show how this type of inlet is designed.展开更多
对涡轮基组合循环(Turbine Based Combined Cycle, TBCC)发动机涡轮进气道进行喷水冷却是解决TBCC发动机推力不连续问题的有效方式之一。本文基于实际流场条件选取某型TBCC发动机涡轮进气道结构,对进气道内喷水冷却特性进行了数值仿真,...对涡轮基组合循环(Turbine Based Combined Cycle, TBCC)发动机涡轮进气道进行喷水冷却是解决TBCC发动机推力不连续问题的有效方式之一。本文基于实际流场条件选取某型TBCC发动机涡轮进气道结构,对进气道内喷水冷却特性进行了数值仿真,研究飞行器不同工况下水滴的蒸发特性及喷水对来流高温空气的预冷效果。结果表明,来流空气温度降幅随水气比提高而增大,最高温降可达152.4K。水气比提高后水滴蒸发率逐渐降低,但蒸发总量仍会继续上升。相同水气比条件下,飞行马赫数越高,喷水冷却效果越明显。在Ma3.5飞行速度和水气比0.03条件下有最高蒸发率,达83.05%。喷水冷却有效扩展了涡轮模态飞行马赫数,最高能使飞行速度提升至Ma2.84,即喷水冷却扩展了TBCC从涡轮模态向超燃冲压模态转换的衔接速域。展开更多
The study presents an experimental exploration into the mode transition of an overunder TBCC(Turbine-Based Combined Cycle)inlet,with a specific emphasis on the flow characteristics at off-design transition Mach number...The study presents an experimental exploration into the mode transition of an overunder TBCC(Turbine-Based Combined Cycle)inlet,with a specific emphasis on the flow characteristics at off-design transition Mach number.A systematic investigation was undertaken into the mode transition characteristics in both unthrottled and throttled conditions within a highspeed duct,employing high speed Schlieren and dynamic pressure acquisition systems.The results show that the high-speed duct faced flow oscillations primarily dictated by the separation bubble near the duct entrance during the downward rotation of splitter,leading to the duct’s unstart under the unthrottled condition.During the splitter’s reverse rotation,a notable hysteresis of unstart/restart of the high-speed duct was observed.Conversely,hysteresis vanishes when the initial flowfield nears the critical state owing to downstream throttling.Moreover,the oscillatory diversity,a distinctive characteristic of the high-speed duct,was firstly observed during the mode transition induced by throttling.The flow evolution was divided into four stages:an initial instability stage characterized by low-frequency oscillations below 255 Hz induced by shock train self-excitation oscillation and high-frequency oscillations around 1367 Hz caused by the movement of separation bubble.This stage is succeeded by the“big buzz”phase,comprised of pressure accumulation/release within the overflow-free duct and shock motion outside the duct to retain dynamic flow balance.The dominant frequency escalated with the increase of the internal contraction ratio in the range of 280 Hz to 400 Hz.This was followed by a high-frequency oscillation stage around 453 Hz dominated by a large internal contraction ratio with low pulsating energy,accompanied by a continuous supersonic overflow.Lastly,as the splitter gradually intersected the boundary layer of the first-stage compression surface,the capture area and the turbulence intensity of the incoming flow underwent a sudden shift,leading to a more diverse flow oscillation within the duct,manifested as various forms of mixed buzz.展开更多
文摘A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of the free stream Mach number, the total pressure recovery decreases, while the mass flow ratio increases to the maximum at the design point and then decreases; (2) when the angle of attack, a, is less than 6°, the total pressure recovery of both side inlets tends to decrease, but, on the lee side inlet, its values are higher than those on the windward side inlet, and the mass flow ratio on lee side inlet increases first and then falls, while on the windward side it keeps declining slowly with the sum of mass flow on both sides remaining almost constant; (3) with the attack angle, a, rising from 6° to 9°, both total pressure recovery and mass flow ratio on the lee side inlet fall quickly, but on the windward side inlet can be observed decreases in the total pressure recovery and increases in the mass flow ratio; (4) by comparing the velocity and back pressure characterristics of the inlet with a bleed slot to those of the inlet without, it stands to reason that the existence of a bleed slot has not only widened the steady working range of inlet, but also made an enormous improvement in its performance at high Mach numbers. Besides, this paper also presents an example to show how this type of inlet is designed.
文摘对涡轮基组合循环(Turbine Based Combined Cycle, TBCC)发动机涡轮进气道进行喷水冷却是解决TBCC发动机推力不连续问题的有效方式之一。本文基于实际流场条件选取某型TBCC发动机涡轮进气道结构,对进气道内喷水冷却特性进行了数值仿真,研究飞行器不同工况下水滴的蒸发特性及喷水对来流高温空气的预冷效果。结果表明,来流空气温度降幅随水气比提高而增大,最高温降可达152.4K。水气比提高后水滴蒸发率逐渐降低,但蒸发总量仍会继续上升。相同水气比条件下,飞行马赫数越高,喷水冷却效果越明显。在Ma3.5飞行速度和水气比0.03条件下有最高蒸发率,达83.05%。喷水冷却有效扩展了涡轮模态飞行马赫数,最高能使飞行速度提升至Ma2.84,即喷水冷却扩展了TBCC从涡轮模态向超燃冲压模态转换的衔接速域。
基金funded by the National Natural Science Foundation of China(Nos.12025202,U20A2070 and 12172175)the National Science and Technology Major Project,China(No.J2019-Ⅱ-0014-0035)+2 种基金the Postdoctoral Fellowship Program of CPSF,China(No.GZB20230970)the Science Center for Gas Turbine Project,China(Nos.P2022-C-Ⅱ-002-001 and P2022-A-Ⅱ-002-001)the Young Scientific and Technological Talents Project of Jiangsu Association for Science and Technology,China(No.TJ-2021-052).
文摘The study presents an experimental exploration into the mode transition of an overunder TBCC(Turbine-Based Combined Cycle)inlet,with a specific emphasis on the flow characteristics at off-design transition Mach number.A systematic investigation was undertaken into the mode transition characteristics in both unthrottled and throttled conditions within a highspeed duct,employing high speed Schlieren and dynamic pressure acquisition systems.The results show that the high-speed duct faced flow oscillations primarily dictated by the separation bubble near the duct entrance during the downward rotation of splitter,leading to the duct’s unstart under the unthrottled condition.During the splitter’s reverse rotation,a notable hysteresis of unstart/restart of the high-speed duct was observed.Conversely,hysteresis vanishes when the initial flowfield nears the critical state owing to downstream throttling.Moreover,the oscillatory diversity,a distinctive characteristic of the high-speed duct,was firstly observed during the mode transition induced by throttling.The flow evolution was divided into four stages:an initial instability stage characterized by low-frequency oscillations below 255 Hz induced by shock train self-excitation oscillation and high-frequency oscillations around 1367 Hz caused by the movement of separation bubble.This stage is succeeded by the“big buzz”phase,comprised of pressure accumulation/release within the overflow-free duct and shock motion outside the duct to retain dynamic flow balance.The dominant frequency escalated with the increase of the internal contraction ratio in the range of 280 Hz to 400 Hz.This was followed by a high-frequency oscillation stage around 453 Hz dominated by a large internal contraction ratio with low pulsating energy,accompanied by a continuous supersonic overflow.Lastly,as the splitter gradually intersected the boundary layer of the first-stage compression surface,the capture area and the turbulence intensity of the incoming flow underwent a sudden shift,leading to a more diverse flow oscillation within the duct,manifested as various forms of mixed buzz.