期刊文献+
共找到80,443篇文章
< 1 2 250 >
每页显示 20 50 100
Progress on two-dimensional ferrovalley materials
1
作者 李平 刘邦 +2 位作者 陈帅 张蔚曦 郭志新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期32-43,共12页
The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted t... The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics. 展开更多
关键词 ferrovalley valley polarization two-dimensional materials multi-field tunable
下载PDF
Air-Ground Collaborative Mobile Edge Computing:Architecture,Challenges,and Opportunities
2
作者 Qin Zhen He Shoushuai +5 位作者 Wang Hai Qu Yuben Dai Haipeng Xiong Fei Wei Zhenhua Li Hailong 《China Communications》 SCIE CSCD 2024年第5期1-16,共16页
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow... By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC. 展开更多
关键词 air-ground architecture COLLABORATIVE mobile edge computing
下载PDF
Recent advances in two-dimensional photovoltaic devices
3
作者 Haoyun Wang Xingyu Song +6 位作者 Zexin Li Dongyan Li Xiang Xu Yunxin Chen Pengbin Liu Xing Zhou Tianyou Zhai 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期26-40,共15页
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe... Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices. 展开更多
关键词 two-dimensional materials photovoltaic devices PHOTODETECTORS solar cells HETEROSTRUCTURES
下载PDF
Unlocking the potential of ultra-thin two-dimensional antimony materials:Selective growth and carbon coating for efficient potassium-ion storage
4
作者 Dongyu Zhang Zhaomin Wang +4 位作者 Yabin Shen Yeguo Zou Chunli Wang Limin Wang Yong Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期440-449,共10页
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b... Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries. 展开更多
关键词 ANTIMONY two-dimensional materials Selective growth Nitrogen-doped carbon Potassium-ion batteries
下载PDF
Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize
5
作者 Binbin Li Xianmin Chen +6 位作者 Tao Deng Xue Zhao Fang Li Bingchao Zhang Xin Wang Si Shen Shunli Zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期551-565,共15页
The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely de... The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely determined by the temperature conditions it is exposed to over time.Maize is the main cereal crop,and its stem growth and plant architecture are closely related to lodging resistance,and especially sensitive to temperature.However,systematic research on the timing effect of HT on the sequentially developing internode and stem is currently lacking.To identify the timing effect of HT on the morphology and plasticity of the stem in maize,two hybrids(Zhengdan 958(ZD958),Xianyu 335(XY335))characterized by distinct morphological traits in the stem were exposed to a 7-day HT treatment from the V6 to V17 stages(Vn presents the vegetative stage with n leaves fully expanded)in 2019-2020.The results demonstrated that exposure to HT during V6-V12 accelerated the rapid elongation of stems.For instance,HT occurring at V7 and V12 specifically promoted the lengths and weights of the 3rd-5th and 9th-11th internodes,respectively.Meanwhile,HT slowed the growth of internodes adjacent to the promoted internodes.Interestingly,compared with control,the plant height was significantly increased soon after HT treatment,but the promotion effect became narrower at the subsequent flowering stage,demonstrating a self-adjusting mechanism in the maize plant in response to HT.Importantly,HT altered the plant architectures,including a rising of the ear position and increase in the ear position coefficient.XY335 exhibited greater sensitivity in stem development than ZD958 under HT treatment.These findings improve our systematic understanding of the plasticity of internode and plant architecture in response to the timing of HT exposure. 展开更多
关键词 MAIZE high temperature internode growth PLASTICITY plant architecture
下载PDF
Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
6
作者 王斐 张亚玲 +2 位作者 杨文佳 张会生 许小红 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期16-31,共16页
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ... Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field. 展开更多
关键词 valley polarization valley-polarized topological states two-dimensional material
下载PDF
Anomalous valley Hall effect in two-dimensional valleytronic materials
7
作者 陈洪欣 原晓波 任俊峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期2-14,共13页
The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectron... The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them. 展开更多
关键词 anomalous valley Hall effect valley polarization valleytronics two-dimensional materials
下载PDF
Global dust density in two-dimensional complex plasma
8
作者 赵逸真 刘松芬 +1 位作者 孔伟 杨芳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期445-450,共6页
The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyz... The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyze the center-to-wall dust density. It is found that the local dust density in the outer region relative to that of the inner region is more nonuniform,being consistent with the feature of quadratic potential. The dependences of the global dust density on equilibrium temperature, particle size, confinement strength, and confinement shape are investigated. It is found that the particle size, the confinement strength, and the confinement shape strongly affect the global dust density, while the equilibrium temperature plays a minor effect on it. In the direction where there is a stronger confinement, the dust density gradient is bigger. 展开更多
关键词 dust particles quadratic potential two-dimensional mesh grid
下载PDF
Emerging two-dimensional Mo-based materials for rechargeable metal-ion batteries:Advances and perspectives
9
作者 Qingqing Ruan Yuehua Qian +2 位作者 Mengda Xue Lingyun Chen Qichun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期487-518,I0012,共33页
With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years... With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years,two-dimensional(2D)molybdenum-based(Mo-based)materials have drawn considerable attention due to their exceptional characteristics,including low cost,unique crystal structure,high theoretical capacity and controllable chemical compositions.However,like other transition metal compounds,Mo-based materials are facing thorny challenges to overcome,such as slow electron/ion transfer kinetics and substantial volume changes during the charge and discharge processes.In this review,we summarize the recent progress in developing emerging 2D Mo-based electrode materials for MIBs,encompassing oxides,sulfides,selenides,carbides.After introducing the crystal structure and common synthesis methods,this review sheds light on the charge storage mechanism of several 2D Mo-based materials by various advanced characterization techniques.The latest achievements in utilizing 2D Mo-based materials as electrode materials for various MIBs(including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs)and zinc-ion batteries(ZIBs))are discussed in detail.Afterwards,the modulation strategies for enhancing the electrochemical performance of 2D Mo-based materials are highlighted,focusing on heteroatom doping,vacancies creation,composite coupling engineering and nanostructure design.Finally,we present the existing challenges and future research directions for 2D Mo-based materials to realize high-performance energy storage systems. 展开更多
关键词 Molybdenum-based materials two-dimensional materials Lithium-ion batteries Sodium-ion batteries Zinc-ion batteries
下载PDF
Low-frequency hybridized excess vibrations of two-dimensional glasses
10
作者 付立存 郑一鸣 王利近 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期550-555,共6页
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i... One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties. 展开更多
关键词 density of states vibrational modes sound attenuation two-dimensional glasses
下载PDF
A 48-bp deletion upstream of LIGULELESS 1 alters rice panicle architecture
11
作者 Linhua Wu Min Hu +6 位作者 Shuwei Lyu Wenfeng Chen Hang Yu Qing Liu Wei He Chen Li Zuofeng Zhu 《The Crop Journal》 SCIE CSCD 2024年第2期354-363,共10页
Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANIC... Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture. 展开更多
关键词 Upstream region Panicle architecture Gene expression BR Rice
下载PDF
Enhancing MXene-based supercapacitors:Role of synthesis and 3D architectures
12
作者 Wen Siong Poh Wen Jie Yiang +2 位作者 Wee-Jun Ong Pau Loke Show Chuan Yi Foo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期1-26,共26页
MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i... MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted. 展开更多
关键词 MXene 3D architectures Synthesis design SUPERCAPACITOR Energy storage
下载PDF
Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
13
作者 程晓昱 解晨雪 +6 位作者 刘宇伦 白瑞雪 肖南海 任琰博 张喜林 马惠 蒋崇云 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期112-117,共6页
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b... Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices. 展开更多
关键词 two-dimensional materials deep learning data augmentation generating adversarial networks
下载PDF
Single-cell manipulation by two-dimensional micropatterning
14
作者 Xuehe Ma Haimei Zhang +7 位作者 Shiyu Deng Qiushuo Sun Qingsong Hu Yuhang Pan Fen Hu Imshik Lee Fulin Xing Leiting Pan 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期45-59,共15页
Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-di... Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-dimensional micropatterning techniques offer powerful tools to construct controllable and well-organized microenvironment for single-cell level investigations with qualitative analysis,cellular standardization,and in vivo environment mimicking.Here,we provide an overview of the basic principle and characteristics of the two most widely-used micropatterning techniques,including photolithographic micropatterning and soft lithography micropatterning.Moreover,we summarize the application of micropatterning technique in controlling cytoskeleton,cell migration,nucleus and gene expression,as well as intercellular communication. 展开更多
关键词 two-dimensional micropatterning CYTOSKELETON cell migration extracellular matrix intercellular communication gene expression
下载PDF
Magnetic proximity effect in the two-dimensional ε-Fe_(2)O_(3)/NbSe_(2)heterojunction
15
作者 车冰玉 胡国静 +17 位作者 朱超 郭辉 吕森浩 刘轩冶 吴康 赵振 潘禄禄 祝轲 齐琦 韩烨超 林晓 李子安 申承民 鲍丽宏 刘政 周家东 杨海涛 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期492-497,共6页
Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie te... Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie temperature and instability in air,it is hard to realize practical applications for the reported layered magnetic materials at present.In this paper,we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe_(2)O_(3) nanosheets with Curie temperature above 350 K.The ε-Fe_(2)O_(3)/NbSe_(2) heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe_(2) multilayer.The electrical transport results show that the subtle proximity effect can modulate the interfacial spin–orbit interaction while undegrading the superconducting critical parameters.Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals(vdW)materials for exploring new physical phenomena. 展开更多
关键词 two-dimensional heterojunctions magnetic proximity effect non-layered magnetic nanosheet spin-orbit interaction
下载PDF
Sedimentary architecture of submarine channel-lobe systems under different seafloor topography:Insights from the Rovuma Basin offshore East Africa
16
作者 Mei Chen Sheng-He Wu +6 位作者 Rui-Feng Wang Jia-Jia Zhang Peng-Fei Xie Min Wang Xiao-Feng Wang Ji-Tao Yu Qi-Cong Xiong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期125-142,共18页
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w... Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems. 展开更多
关键词 Submarine fan Seafloor topography Sedimentary architecture Slope system SW Indian ocean
下载PDF
Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers
17
作者 李慧平 潘帅唯 +2 位作者 王喆 向斌 朱文光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期708-714,共7页
A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont... A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications. 展开更多
关键词 exchange bias two-dimensional ferromagnetic/antiferromagnetic bilayers asymmetric magnetic interaction
下载PDF
Evolutionary Neural Architecture Search and Its Applications in Healthcare
18
作者 Xin Liu Jie Li +3 位作者 Jianwei Zhao Bin Cao Rongge Yan Zhihan Lyu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期143-185,共43页
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ... Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications. 展开更多
关键词 Neural architecture search evolutionary computation large-scale multiobjective optimization distributed parallelism healthcare
下载PDF
Enhanced Differentiable Architecture Search Based on Asymptotic Regularization
19
作者 Cong Jin Jinjie Huang +1 位作者 Yuanjian Chen Yuqing Gong 《Computers, Materials & Continua》 SCIE EI 2024年第2期1547-1568,共22页
In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search spa... In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach. 展开更多
关键词 Differentiable architecture search allegro search space asymptotic regularization natural exponential cosine annealing
下载PDF
Application of Artificial Intelligence Technology in Landscape Architecture Industry
20
作者 QIU Cuiju 《Journal of Landscape Research》 2024年第2期66-68,共3页
With wide application prospects in landscape industry,artificial intelligence technology plays an important role in improving work efficiency,optimizing design,strengthening construction management,and achieving intel... With wide application prospects in landscape industry,artificial intelligence technology plays an important role in improving work efficiency,optimizing design,strengthening construction management,and achieving intelligent maintenance.With the continuous development of technology,the application of artificial intelligence in landscape architecture industry will become more in-depth and extensive,which can provid powerful support for the innovation and development of the industry.It is hoped that the modernization process of the landscape industry can be promoted through the analysis on the application and difficulties of artificial intelligence technology in the landscape industry. 展开更多
关键词 Artificial intelligence Landscape architecture STANDARDIZATION NORMALIZATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部