Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physic...Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physics,including excitonic coherence dynamics,exciton many-body interactions,and their optical properties,faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects.In this perspective,we elaborate upon how optical two-dimensional coherent spectroscopy(2DCS)emerges as an effective tool to tackle the challenges,and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.展开更多
To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonli...To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.展开更多
Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aim...Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aims to provide a bridge between the principles and intuitive physical description of 2DES for tutorial purpose. Special emphasis is laid upon how 2DES circumvents the restrictions from both uncertainty principle and the wave-packet collapse during the coherent detection, leading to the successful detection of the coherence in terms of energy difference between the eigenstates showing as the quantum beats; then upon the possible mixing among the pure electronic transition, single-rnode and multi-mode coupled vibronic transition leading to the observed beating phenomena. Finally, recent ad- vances in experimentally distinguishing between the electronic coherence and the vibrational coherence are briefly discussed.展开更多
In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of ...In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).展开更多
To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) ...To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) (PMDA-ODA)/silica nanocomposite was investigated by two-dimensional ATR-FTIR spectroscopy, by which three states of water molecules owning different H-bonding strength were distinguished. The amounts and strength of H-bonding also played a significant role in determining the diffusion rate of the different states of water molecules. The type of aggregated water molecules which also formed H-bonding with silicic acid (residues) or polyimide system was the last one diffusing to the polymer side in contact with the ATR crystal element because the polymeric matrix blocked their diffusion to a great extent. The diffusion coefficient was also estimated to gain the information of the dynamic diffusion behavior.展开更多
Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropi...Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.展开更多
Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result...Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtoseeond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.展开更多
Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors ha...Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors have begun to appear in the market. Therefore, it is an urgent need for new techniques to discriminate the genuine and counterfeit Moutai liquor. In this work, the conventional Ultraviolet-Visible (UV-Vis) spectroscopy and two-dimensional correlation UV-Vis spectroscopy are applied to obtain the UV-Vis characteristic of Moutai liquor and counterfeit one, respectively. The experimental results reveal that the conventional UV-Vis spectra of the genuine and counterfeit Moutai liquor are similar. However, the two-dimensional correlation UV-Vis spectra of them are different and this method would be applied to differentiate the counterfeit Moutai liquor from the genuine Moutai liquor. Compared with conventional methods, this novel method has the advantages of easy operation, simple instrumentation and direct recognition, which make it a potential tool in the fields of food safety.展开更多
Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides...Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.展开更多
A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system...A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.展开更多
Ultrathin van der Waals(vdW)magnets provide a possibility to access magnetic ordering in the two-dimensional(2D)limit,which are expected to be applied in the spintronic devices.Raman spectroscopy is a powerful charact...Ultrathin van der Waals(vdW)magnets provide a possibility to access magnetic ordering in the two-dimensional(2D)limit,which are expected to be applied in the spintronic devices.Raman spectroscopy is a powerful characterization method to investigate the spin-related properties in 2D vdW magnets,including magnon and spin–lattice interaction,which are hardly accessible by other optical methods.In this paper,the recent progress of various magnetic properties in 2D vdW magnets studied by Raman spectroscopy is reviewed,including the magnetic transition,spin-wave,spin–lattice interaction,symmetry tuning induced by spin ordering,and nonreciprocal magneto-phonon Raman scattering.展开更多
Based on a calculation model, we study the interference phenomena of serially coupled ∨-type and ∧-type triple quantum dots (CTQDs) driven simultaneously by a strong driving field and a weak probe field. Strongly ...Based on a calculation model, we study the interference phenomena of serially coupled ∨-type and ∧-type triple quantum dots (CTQDs) driven simultaneously by a strong driving field and a weak probe field. Strongly depending on the configuration of the three-level CTQD, the probe absorption spectra, which are shown in the tunneling current, exhibit various quantum coherence properties. In the case where the two pairs of transitions of the CTQD have a small eigenfrequency difference △ω, the double-coupling effect of the driving field results in two Autler Townes doublets and one weak Mollow triplet in one spectrum. With the value of △ω increasing, only one Autler-Townes splitting remains due to the single-coupling of the field. We also find that the effect of spontaneous emission of phonons may lead to an obvious background current, which can be used to distinguish which transition is driven by the driving field in experiment. The interesting quantum property of a CTQD revealed in our results suggests its potential applications in quantum modulators and quantum logic devices.展开更多
Surface-enhanced Raman spectroscopy(SERS) based on two-dimensional(2 D) materials has attracted great attention over the past decade. Compared with metallic materials, which enhance Raman signals via the surface plasm...Surface-enhanced Raman spectroscopy(SERS) based on two-dimensional(2 D) materials has attracted great attention over the past decade. Compared with metallic materials, which enhance Raman signals via the surface plasmon effect, 2 D materials integrated on silicon substrates are ideal for use in the fabrication of plasmon-free SERS chips, with the advantages of outstanding fluorescence quenching capability, excellent biomolecular compatibility, tunable Fermi levels, and potentially lowcost material preparation. Moreover, recent studies have shown that the limits of detection of 2 D-material-based SERS may be comparable with those of metallic substrates, which has aroused significant research interest. In this review, we comprehensively summarize the advances in SERS chips based on 2 D materials. As several excellent reviews of graphene-enhanced Raman spectroscopy have been published in the past decade, here, we focus only on 2 D materials beyond graphene, i.e., transition metal dichalcogenides, black phosphorus, hexagonal boron nitride, 2 D titanium carbide or nitride, and their heterostructures. We hope that this paper can serve as a useful reference for researchers specializing in 2 D materials, spectroscopy, and diverse applications related to chemical and biological sensing.展开更多
We have recently introduced a new technique,coherent hemodynamics spectroscopy(CHS),which aims at characterizing a specic kind of tissue hemodynamics that feature a high level of covariation with a given physiological...We have recently introduced a new technique,coherent hemodynamics spectroscopy(CHS),which aims at characterizing a specic kind of tissue hemodynamics that feature a high level of covariation with a given physiological quantity.In this study,we carry out a detailed analysis of the signicance of coherence and phase synchronization between oscillations of arterial blood pressure(ABP)and total hemoglobin concentration([Hbt]),measured with near-infrared spectroscopy(NIRS)during a typical protocol for CHS,based on a cyclic thigh cuffocclusion and release.Even though CHS is based on a linear time invariant model between ABP(input)and NIRS measurands(outputs),for practical reasons in a typical CHS protocol,we inducenite“groups”of ABP oscillations,in which each group is characterized by a different frequency.For this reason,ABP(input)and NIRS measurands(output)are not stationary processes,and we have used wavelet coherence and phase synchronization index(PSI),as a metric of coherence and phase synchronization,respectively.PSI was calculated by using both the wavelet cross spectrum and the Hilbert transform.We have also used linear coherence(which requires stationary process)for comparison with wavelet coherence.Themethod of surrogate data is used tond critical values for the signicance of covariation between ABP and[Hbt].Because we have found similar critical values for wavelet coherence and PSI by usingve of the most used methods of surrogate data,we propose to use the data-independent Gaussian random numbers(GRNs),for CHS.By using wavelet coherence and wavelet cross spectrum,and GRNs as surrogate data,we have found the same results for the signicance of coherence and phase synchronization between ABP and[Hbt]:on a total set of 20 periods of cuffoscillations,we have found 17 coherent oscillations and 17 phase synchronous oscillations.Phase synchronization assessed with Hilbert transform yielded similar results with 14 phase synchronous oscillations.Linear coherence and wavelet coherence overall yielded similar number of signicant values.We discuss possible reasons for this result.Despite the similarity of linear and wavelet coherence,we argue that wavelet coherence is preferable,especially if one wants to use baseline spontaneous oscillations,in which phase locking and coherence between signals might be only temporary.展开更多
A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensi...A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.展开更多
A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including...A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.展开更多
Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t chall...Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t challenging par t for experimen tal demonstration of 2DES.Here,we present a tuto rial review on the 2DES proto cols based on active phase managements which are originally developed for quantum optics experiments.We introduce the 2DES techniques in box and pump-probe geometries with phase stabilization realized by interferometry,and outline the fully collinear 2DES approach with the frequency tagging by acoustic optical modulators and frequency combs.The combination of active phase managements,ultrashort pulses and other spectroscopic methods may open new opportunities to tackle essential challenges related to excited states.展开更多
A recently proposed analytical hemodynamie modell[s.Fantini,Neurolmage 85,202-221(2014)]is able to predict the changes of oxy,deoxy,and total hemoglobin concentrations(model outputs)given arbitrary changes in blood fl...A recently proposed analytical hemodynamie modell[s.Fantini,Neurolmage 85,202-221(2014)]is able to predict the changes of oxy,deoxy,and total hemoglobin concentrations(model outputs)given arbitrary changes in blood flow,blood volume,and rate of oygen consumption(model inputs).One asumption of this model is that the capillary compartment is characterized by a single blood transit time.In this work,we have extended the original model by considering a distribution of capillary transit times and we have compared the outputs of both models(original and extended)for the case of sinusoidal input signals at different frequencies,which realizes the new technique of coherent hemodynamics spectroscopy(CHS).For the calculations with the original model,we have used the mean value of the distribution of capillary transit times con-sidered in the extended model.We have found that,for distributions of capillary transit times having mean values around 1 s and a standard deviation less than about 45%of the mean value,the original and extended models yield the same CHS spectra(i.e.,model outputs versus fre-quency of ocillation)within typical experimental errors.For wider capillary transit time dis-tributions,the two models yield different CHS spectra.By assuming that Poiseuille's law is valid in the capillary compartment,we have related the distribution of capillary transit times to the distributions of capillary lengths and capillary speed of blood flow to calculate the average capillary and venous saturations.We have found that,for standard deviations of the capillanry transit time distrilbution that are less than about 80%of the mean value,the average capillary saturation is always larger than the venous saturation.By contrast,the average capillary satu-ration may be less than the venous saturation for wider distributions of the capillary transit times.展开更多
Layered materials exhibit different electronic and phonon properties along in-plane and out-of-plane directions;existing studies focus on their in-plane behaviors,and the influence of such anisotropies on the dynamics...Layered materials exhibit different electronic and phonon properties along in-plane and out-of-plane directions;existing studies focus on their in-plane behaviors,and the influence of such anisotropies on the dynamics of photocarriers and phonons is unknown.Here,we fabricate layered PdSe_(2)crystals with flat edge surfaces and compare the time-resolved ultrafast spectroscopies on their basal and edge surfaces.Pronounced differences in the transient reflection spectroscopies reveal the inconsistent photocarrier and phonon dynamics behaviors on the two surfaces:the slow hot carrier relaxation process is accelerated and the thermoelasticity-induced longitudinal coherent acoustic phonon oscillation completely vanishes on the edge surface,as compared with the basal surface.Theoretical analysis reveals that the inconsistent hot carrier dynamics originate from the anisotropic properties of low-energy phonons in PdSe_(2),and the absence of phonon oscillation on the edge surface results from the wavevector-limited sensitivity of acoustic B_(1u)mode.Moreover,polarization-dependent spectroscopies indicate the diverse optical anisotropies beyond the in-plane of PdSe_(2).This work provides a new method to explore unique physical properties and modulate the optical anisotropy of layered materials.展开更多
In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, pro...In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, probe wavelength,external magnetic field and temperature. Our results suggest that the oscillation response at 24.5 GHz results from the coherent phonon generation in Co2MnAl film and can be explained by a propagating strain pulse model. From the probe wavelength dependent oscillation frequency, a sound velocity of(3.85±0.1)×10-3m/s at 800 nm for the epitaxial Co2MnAl film is determined at room temperature. The detected coherent acoustic phonon generation in Co2MnAl reported in this work provides a valuable reference for exploring the high-speed magnetization manipulation via magnetoelastic coupling for future spintronic devices based on Heusler alloy films.展开更多
基金S.Y.and X.L.acknowledge the support from the National Natural Science Foundation of China(Grant Nos.12121004 and 12004391)the China Postdoctoral Science Foundation(Grants Nos.2020T130682 and 2019M662752)+6 种基金the Science and Technology Department of Hubei Province(Grant No.2020CFA029)the Knowledge Innovation Program of Wuhan-Shuguang Project.T.J.acknowledges the support from the National Natural Science Foundation of China(Grant Nos.62175188 and 62005198)the Shanghai Science and Technology Innovation Action Plan Project(Grant No.23ZR1465800)X.C.acknowledges support from the National Natural Science Foundation of China(Grant Nos.61925504,62020106009,and 6201101335)Science and Technology Commission of Shanghai Municipality(Grant Nos.17JC1400800,20JC1414600,and 21JC1406100)the Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone(Grant No.ZJ2021-ZD-008)D.H.acknowledges the support from the Fundamental Research Funds for the Central Universities.
文摘Exciton physics in atomically thin transition-metal dichalcogenides(TMDCs)holds paramount importance for fundamental physics research and prospective applications.However,the experimental exploration of exciton physics,including excitonic coherence dynamics,exciton many-body interactions,and their optical properties,faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects.In this perspective,we elaborate upon how optical two-dimensional coherent spectroscopy(2DCS)emerges as an effective tool to tackle the challenges,and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.
基金This work was supported by the National Natural Science Foundation of China (No.21033008 and No.21073169)the National Basic Research Program of China (No.2010CB923300 and No.2011CB921400)and the Hong Kong RGC (No.604709) and UGC (AoE/P04/08-2) is gratefully acknowledged.
文摘To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.
基金supported by the National Natural Science Foundation of China (No.21227003, No.21433014, No.11721404)
文摘Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aims to provide a bridge between the principles and intuitive physical description of 2DES for tutorial purpose. Special emphasis is laid upon how 2DES circumvents the restrictions from both uncertainty principle and the wave-packet collapse during the coherent detection, leading to the successful detection of the coherence in terms of energy difference between the eigenstates showing as the quantum beats; then upon the possible mixing among the pure electronic transition, single-rnode and multi-mode coupled vibronic transition leading to the observed beating phenomena. Finally, recent ad- vances in experimentally distinguishing between the electronic coherence and the vibrational coherence are briefly discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574060)the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Shandong Provincal Higher Educational Science and Technology Program of China (Grant Nos. J09LA07 and J10LA15)
文摘In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).
基金supported by the National Natural Science Foundation of China(No.20573022,No.20425415)the National Basic Research Pro-gram of China(2005CB623800),the PHD Program of M0E(20050246010)the"Qimingxing"Project(No.04QM1402)of Shanghai Municipal Science and Technology Commission,and the"Shuguang"Project(No.01SG05)of the Shanghai Municipal Education Commission and Shanghai Education Development Foundation.
文摘To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) (PMDA-ODA)/silica nanocomposite was investigated by two-dimensional ATR-FTIR spectroscopy, by which three states of water molecules owning different H-bonding strength were distinguished. The amounts and strength of H-bonding also played a significant role in determining the diffusion rate of the different states of water molecules. The type of aggregated water molecules which also formed H-bonding with silicic acid (residues) or polyimide system was the last one diffusing to the polymer side in contact with the ATR crystal element because the polymeric matrix blocked their diffusion to a great extent. The diffusion coefficient was also estimated to gain the information of the dynamic diffusion behavior.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0301204)the National Natural Science Foundation of China(Grant Nos.11604326,11434010,11474277,and 11225421)
文摘Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.
基金supported by the National Natural Science Foundation of China (Grant Nos.60878018 and 61008023)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China (Grant No.HIT.NSRIF.2009009)the Science and Technology Innovation Foundation,Harbin,China (Grant No.RC2007QN017030)
文摘Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtoseeond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.
文摘Chinese liquor Moutai is the “National alcoholic drink” in China and plays a very important role of social activities in Chinese people’s life. In pursuit of high profits, some illegal counterfeit Moutai liquors have begun to appear in the market. Therefore, it is an urgent need for new techniques to discriminate the genuine and counterfeit Moutai liquor. In this work, the conventional Ultraviolet-Visible (UV-Vis) spectroscopy and two-dimensional correlation UV-Vis spectroscopy are applied to obtain the UV-Vis characteristic of Moutai liquor and counterfeit one, respectively. The experimental results reveal that the conventional UV-Vis spectra of the genuine and counterfeit Moutai liquor are similar. However, the two-dimensional correlation UV-Vis spectra of them are different and this method would be applied to differentiate the counterfeit Moutai liquor from the genuine Moutai liquor. Compared with conventional methods, this novel method has the advantages of easy operation, simple instrumentation and direct recognition, which make it a potential tool in the fields of food safety.
基金the National Natural Science Foundation of China(No.91753118 and No.21773012)the Fundamental Research Funds for Central Universities。
文摘Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.
基金This work was supported by the Foundation of Education Committee of Fujian Province (K02028, JB04049), the State Key Laboratory of Structural Chemistry, and Science and Technology Foundation of Fuzhou University
文摘A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.
基金Project supported by Beijing Natural Science Foundation,China(Grant No.JQ18014)the National Natural Science Foundation of China(Grant No.12074371)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000),and CAS Interdisciplinary Innovation Team.
文摘Ultrathin van der Waals(vdW)magnets provide a possibility to access magnetic ordering in the two-dimensional(2D)limit,which are expected to be applied in the spintronic devices.Raman spectroscopy is a powerful characterization method to investigate the spin-related properties in 2D vdW magnets,including magnon and spin–lattice interaction,which are hardly accessible by other optical methods.In this paper,the recent progress of various magnetic properties in 2D vdW magnets studied by Raman spectroscopy is reviewed,including the magnetic transition,spin-wave,spin–lattice interaction,symmetry tuning induced by spin ordering,and nonreciprocal magneto-phonon Raman scattering.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774016)
文摘Based on a calculation model, we study the interference phenomena of serially coupled ∨-type and ∧-type triple quantum dots (CTQDs) driven simultaneously by a strong driving field and a weak probe field. Strongly depending on the configuration of the three-level CTQD, the probe absorption spectra, which are shown in the tunneling current, exhibit various quantum coherence properties. In the case where the two pairs of transitions of the CTQD have a small eigenfrequency difference △ω, the double-coupling effect of the driving field results in two Autler Townes doublets and one weak Mollow triplet in one spectrum. With the value of △ω increasing, only one Autler-Townes splitting remains due to the single-coupling of the field. We also find that the effect of spontaneous emission of phonons may lead to an obvious background current, which can be used to distinguish which transition is driven by the driving field in experiment. The interesting quantum property of a CTQD revealed in our results suggests its potential applications in quantum modulators and quantum logic devices.
基金supported by the National Natural Science Foundation of China (61805175)the Promotion of Science (JP18K13798)China Postdoctoral Sci-ence Foundation (2020M670641)。
文摘Surface-enhanced Raman spectroscopy(SERS) based on two-dimensional(2 D) materials has attracted great attention over the past decade. Compared with metallic materials, which enhance Raman signals via the surface plasmon effect, 2 D materials integrated on silicon substrates are ideal for use in the fabrication of plasmon-free SERS chips, with the advantages of outstanding fluorescence quenching capability, excellent biomolecular compatibility, tunable Fermi levels, and potentially lowcost material preparation. Moreover, recent studies have shown that the limits of detection of 2 D-material-based SERS may be comparable with those of metallic substrates, which has aroused significant research interest. In this review, we comprehensively summarize the advances in SERS chips based on 2 D materials. As several excellent reviews of graphene-enhanced Raman spectroscopy have been published in the past decade, here, we focus only on 2 D materials beyond graphene, i.e., transition metal dichalcogenides, black phosphorus, hexagonal boron nitride, 2 D titanium carbide or nitride, and their heterostructures. We hope that this paper can serve as a useful reference for researchers specializing in 2 D materials, spectroscopy, and diverse applications related to chemical and biological sensing.
基金the US National Institutes of Health,Grant Nos.R21-EB020347 and R01-NS095334.
文摘We have recently introduced a new technique,coherent hemodynamics spectroscopy(CHS),which aims at characterizing a specic kind of tissue hemodynamics that feature a high level of covariation with a given physiological quantity.In this study,we carry out a detailed analysis of the signicance of coherence and phase synchronization between oscillations of arterial blood pressure(ABP)and total hemoglobin concentration([Hbt]),measured with near-infrared spectroscopy(NIRS)during a typical protocol for CHS,based on a cyclic thigh cuffocclusion and release.Even though CHS is based on a linear time invariant model between ABP(input)and NIRS measurands(outputs),for practical reasons in a typical CHS protocol,we inducenite“groups”of ABP oscillations,in which each group is characterized by a different frequency.For this reason,ABP(input)and NIRS measurands(output)are not stationary processes,and we have used wavelet coherence and phase synchronization index(PSI),as a metric of coherence and phase synchronization,respectively.PSI was calculated by using both the wavelet cross spectrum and the Hilbert transform.We have also used linear coherence(which requires stationary process)for comparison with wavelet coherence.Themethod of surrogate data is used tond critical values for the signicance of covariation between ABP and[Hbt].Because we have found similar critical values for wavelet coherence and PSI by usingve of the most used methods of surrogate data,we propose to use the data-independent Gaussian random numbers(GRNs),for CHS.By using wavelet coherence and wavelet cross spectrum,and GRNs as surrogate data,we have found the same results for the signicance of coherence and phase synchronization between ABP and[Hbt]:on a total set of 20 periods of cuffoscillations,we have found 17 coherent oscillations and 17 phase synchronous oscillations.Phase synchronization assessed with Hilbert transform yielded similar results with 14 phase synchronous oscillations.Linear coherence and wavelet coherence overall yielded similar number of signicant values.We discuss possible reasons for this result.Despite the similarity of linear and wavelet coherence,we argue that wavelet coherence is preferable,especially if one wants to use baseline spontaneous oscillations,in which phase locking and coherence between signals might be only temporary.
文摘A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.
文摘A number of useful techniques associated with two-dimensional correlation spectroscopy(2DCOS)to improve its performance and utility have been developed in the last 30years.Evolution of these 2DCOS techniques,including some of the very recent developments,is reviewed with examples.Topics include merged or modified asynchronous 2Dcorrelation spectrum,two-dimensional codistribution spectroscopy(2DCDS),Pareto scaling,and null-space projection treatment of spectral dataset.
基金This work is supported by the National Key R&D Program of China(No.2017YFA0303700 and No.2018YFA0209101)the National Natural Science Foundation of China(No.21922302,No.21873047,No.11904168,No.91833305,and No.91850105)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central University.
文摘Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t challenging par t for experimen tal demonstration of 2DES.Here,we present a tuto rial review on the 2DES proto cols based on active phase managements which are originally developed for quantum optics experiments.We introduce the 2DES techniques in box and pump-probe geometries with phase stabilization realized by interferometry,and outline the fully collinear 2DES approach with the frequency tagging by acoustic optical modulators and frequency combs.The combination of active phase managements,ultrashort pulses and other spectroscopic methods may open new opportunities to tackle essential challenges related to excited states.
基金supported by the National Institutes of Health (Grant No.R01-CA154774)by the National Science Foundation (Award No.IIS1065154).
文摘A recently proposed analytical hemodynamie modell[s.Fantini,Neurolmage 85,202-221(2014)]is able to predict the changes of oxy,deoxy,and total hemoglobin concentrations(model outputs)given arbitrary changes in blood flow,blood volume,and rate of oygen consumption(model inputs).One asumption of this model is that the capillary compartment is characterized by a single blood transit time.In this work,we have extended the original model by considering a distribution of capillary transit times and we have compared the outputs of both models(original and extended)for the case of sinusoidal input signals at different frequencies,which realizes the new technique of coherent hemodynamics spectroscopy(CHS).For the calculations with the original model,we have used the mean value of the distribution of capillary transit times con-sidered in the extended model.We have found that,for distributions of capillary transit times having mean values around 1 s and a standard deviation less than about 45%of the mean value,the original and extended models yield the same CHS spectra(i.e.,model outputs versus fre-quency of ocillation)within typical experimental errors.For wider capillary transit time dis-tributions,the two models yield different CHS spectra.By assuming that Poiseuille's law is valid in the capillary compartment,we have related the distribution of capillary transit times to the distributions of capillary lengths and capillary speed of blood flow to calculate the average capillary and venous saturations.We have found that,for standard deviations of the capillanry transit time distrilbution that are less than about 80%of the mean value,the average capillary saturation is always larger than the venous saturation.By contrast,the average capillary satu-ration may be less than the venous saturation for wider distributions of the capillary transit times.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074202,and 12174207)the Natural Science Foundation of Tianjin City(Grant No.22JCYBJC00390)the Fundamental Research Funds for the Central Universities-Nankai University(Grant No.63231065)。
文摘Layered materials exhibit different electronic and phonon properties along in-plane and out-of-plane directions;existing studies focus on their in-plane behaviors,and the influence of such anisotropies on the dynamics of photocarriers and phonons is unknown.Here,we fabricate layered PdSe_(2)crystals with flat edge surfaces and compare the time-resolved ultrafast spectroscopies on their basal and edge surfaces.Pronounced differences in the transient reflection spectroscopies reveal the inconsistent photocarrier and phonon dynamics behaviors on the two surfaces:the slow hot carrier relaxation process is accelerated and the thermoelasticity-induced longitudinal coherent acoustic phonon oscillation completely vanishes on the edge surface,as compared with the basal surface.Theoretical analysis reveals that the inconsistent hot carrier dynamics originate from the anisotropic properties of low-energy phonons in PdSe_(2),and the absence of phonon oscillation on the edge surface results from the wavevector-limited sensitivity of acoustic B_(1u)mode.Moreover,polarization-dependent spectroscopies indicate the diverse optical anisotropies beyond the in-plane of PdSe_(2).This work provides a new method to explore unique physical properties and modulate the optical anisotropy of layered materials.
基金supported by the National Basic Research Program of China(Grant No.2013CB922303)the National Natural Science Foundation of China(Grant No.61334006)
文摘In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, probe wavelength,external magnetic field and temperature. Our results suggest that the oscillation response at 24.5 GHz results from the coherent phonon generation in Co2MnAl film and can be explained by a propagating strain pulse model. From the probe wavelength dependent oscillation frequency, a sound velocity of(3.85±0.1)×10-3m/s at 800 nm for the epitaxial Co2MnAl film is determined at room temperature. The detected coherent acoustic phonon generation in Co2MnAl reported in this work provides a valuable reference for exploring the high-speed magnetization manipulation via magnetoelastic coupling for future spintronic devices based on Heusler alloy films.