Semiconducting two-dimensional conjugated polymers(2DCPs)with strong fluorescence emission have great potential for various optoelectronic applications.However,it is enormously challenging to achieve this goal due to ...Semiconducting two-dimensional conjugated polymers(2DCPs)with strong fluorescence emission have great potential for various optoelectronic applications.However,it is enormously challenging to achieve this goal due to the significant compact interlayerπ-πstacking-induced quenching effect in these systems.In this work,we found that highly fluorescent semiconducting 2DCPs can be prepared through an effective side-chain engineering approach in which interlayer spacers are introduced to reduce the fluorescence quenching effect.The obtained two truxene-based 2DCP films that,along with-C6H13 and-C_(12)H_(25)alkyl side chains as interlayer spacers both demonstrate superior fluorescence properties with a high photoluminescence quantum yield of 5.6%and 14.6%,respectively.These are among the highest values currently reported for 2DCP films.Moreover,an ultralong isotropic quasi-twodimensional exciton diffusion length constrained in the plane with its highest value approaching 110 nm was revealed by the transient photoluminescence microscopy technique,suggesting that theπ-conjugated structure in these truxene-based 2DCP films has effectively been extended.This work can enable a broad exploration of highly fluorescent semiconducting 2DCP films for more deeply fundamental properties and optoelectronic device applications.展开更多
Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing we...Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.展开更多
By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-...By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.展开更多
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet...Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.展开更多
Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs...Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.展开更多
Lithium(Li)metal anodes have attracted extensive attention due to their ultrahigh theoretical capacity and low potential.However,the uneven deposition of Li near the unstable electrode/electrolyte interfaces leads to ...Lithium(Li)metal anodes have attracted extensive attention due to their ultrahigh theoretical capacity and low potential.However,the uneven deposition of Li near the unstable electrode/electrolyte interfaces leads to the growth of Li dendrites and the degradation of active electrodes.Herein,we directly fluorinate alkyne-containing conjugated microporous polymers(ACMPs)microspheres with fluorine gas(F_(2))to introduce a novel fluorinated interlayer as an interfacial stabilizer in lithium metal batteries.Using density functional theory methods,it is found that as-prepared fluorinated ACMP(FACMP)has abundant partially ionic C–F bonds.The C–F bonds with electrochemical lability yield remarkable lithiophilicity during cycling.The in situ reactions between the active C–F bonds and Li ions enable transfer of lithium fluoride microcrystals to the solid electrolyte interphase(SEI)layers,guaranteeing effective ionic distribution and smooth Li deposition.Consequently,Li metal electrodes with the fluorinated interlayers demonstrate excellent cycling performances in both half-batteries and full cells with a lithium bis(trifluoromethanesulfonyl)imide electrolyte as well as a nonfluorinated lithium bis(oxalate)borate electrolyte system.This strategy is highly significant in customizable SEI layers to stabilize electrode interfaces and ensure high utilization of Li metal anodes,especially in a nonfluorinated electrolyte.展开更多
With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative...With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu^(2+)and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More importantly,interfacial transfer of electrons from Cu core to the CuN4-based CCP nanoshell was observed within the resulting CuTAB@Cu,which was found to enrich the local electronic density of the CuN4sites.As such,the CuTAB@Cu demonstrates much improved affinity to the*COOH intermediate formed from the rate determining step;the energy barrier for C-C coupling,which is critical to convert CO_(2)into C2products,is also decreased.Accordingly,it delivers a current density of-9.1 mA cm^(-2)at a potential as high as 0.558 V(vs.RHE) in H-type cell and a Faraday efficiency of 46.4% for ethanol.This work emphasizes the profound role of interfacial interaction in tuning the local electronic structure and activating the CuN4-based CCPs for efficient electroreduction of CO_(2).展开更多
Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been ...Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction.In the present contribution,we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer,named CoPPc-TFPPy-CP,and also explored its electro-catalytic application in carbon dioxide reduction to liquid products in an aqueous solution.In the catalyst,cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages,leading to mesoporous formation polymers with the pore size centered at 4.1nm.And the central co-balt atoms shifted to a higher oxidation state after condensation.With these chemical and structural natures,the catalyst displayed a remarkable electrocatalytic CO_(2) reduction performance with an ethanol Faradaic efficiency of 43.25%at-1.0V vs RHE.While at the same time,the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen.To the best of our knowledge,CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO_(2) with a remarkable selectivity.展开更多
This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the...This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the interface characteristics of the mediator based on the work of adhesion,VF lamination is successfully performed for various thicknesses(from 20 to 240 nm)of a conjugated photoactive material composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-bʹ]dithiophene))-alt-(5,5-(1ʹ,3ʹ-di-2-thienyl-5ʹ,7ʹ-bis(2-ethylhexyl)benzo[1ʹ,2ʹ-c:4ʹ,5ʹ-cʹ]dithiophene-4,8-dione)](a polymer donor)and 2,2ʹ-((2Z,2ʹZ)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2ʹʹ,3ʹʹ:4ʹ,5ʹ]thieno[2ʹ,3ʹ:4,5]pyrrolo[3,2-g]thieno[2ʹ,3ʹ:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(a nonfullerene acceptor).Interestingly,the organic photovoltaic and photodetecting applications,prepared by the VF lamination process,showed superior performance compared to those of devices prepared by conventional spin-coating.This is due to the overturned surface morphology,which led to enhanced charge transport ability and blocking of the externally injected charge.Thus,the reproducible VF lamination process,exploiting an adhesion-based elastomeric polymer mediator,is a promising thin-film formation technique for developing efficient next-generation organic optoelectronic materials consistent with the solution process.展开更多
Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials...Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.展开更多
A novel conjugated polymer containing azobenzene and oxadiazole units was synthesized through multi-step synthesis. The structures and properties of monomer and polymer were characterized and evaluated with IR, ^1H NM...A novel conjugated polymer containing azobenzene and oxadiazole units was synthesized through multi-step synthesis. The structures and properties of monomer and polymer were characterized and evaluated with IR, ^1H NMR, UV, TGA and GPC, respectively. Polymer with long side chain of alkoxy shows good solubility, thermal stability and photoisomerization property.展开更多
A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by abso...A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ = 190-800 nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃ 〉 300 ℃ 〉 340 ℃ 〉 220 ℃ 〉 180 ℃.展开更多
The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of th...The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of these polyers were characterized by elemental analysis,transmission electron microscope,DTA,IR, UV Vis,fluorescence and EPR spectra. It has been found that these conjugated polymers have the property of intrinsic semiconductor. The conductivity σ 298K of these polymers is in the range of 10 -9  ̄10 -3 S · cm -1 under pressure 10.63 MPa and incremental in the metal orderMn < Co<Fe<Zn<Cu<Ni.\ The photosensitivity of the MS 8Pz to the CdS PVA films is incremental in the metal order Zn < Mn < Co < Fe < Cu < Ni.展开更多
A novel bipolar conjugated polymer containing triphenylamine and 1, 3, 4-oxadiazole units was synthesized by Suzuki reaction. Its structure and properties were characterized by NMR, IR, UV-Vis, PL spectroscopy and el...A novel bipolar conjugated polymer containing triphenylamine and 1, 3, 4-oxadiazole units was synthesized by Suzuki reaction. Its structure and properties were characterized by NMR, IR, UV-Vis, PL spectroscopy and electrochemical measurement. The photoluminescent spectroscopy and cyclic voltammograms measurement demonstrated that the resulting polymer shows blue emission (477 nm) and possesses both electron and hole-transporting property.展开更多
Soft-stamped nanoimprint lithography(NIL) is considered as one of the most effective processes of nanoscale patterning because of its low cost and high throughput. In this work, this method is used to emboss the pol...Soft-stamped nanoimprint lithography(NIL) is considered as one of the most effective processes of nanoscale patterning because of its low cost and high throughput. In this work, this method is used to emboss the poly(9, 9-dioctylfluorene)film. By reducing the linewidth of the nanogratings on the stamp, the orientations of nanocrystals are confined along the grating vector in the nanoimprint process, where the confinement linewidth is comparable to the geometrical size of the nanocrystal. When the linewidth is about 400 nm, the poly(9, 9-dioctylfluorene)(PFO) nanocrystals could be orderly arranged in the nanogratings, so that both pattern transfer and well-aligned nanocrystal arrangement could be achieved in a single step by the soft-stamped NIL. The relevant mechanism of the nanocrystalline alignment in these nanogratings is fully discussed. The modulation of nanocrystal alignment is of benefit to the charge mobilities and other performances of PFO-based devices for the future applications.展开更多
According to the one-dimensional tight-binding Su-Schrieffer-Heeger model, we have investigated the effects of charged polarons on the static polarizability, axx, and the second order hyperpolarizabilities, γxxxx, of...According to the one-dimensional tight-binding Su-Schrieffer-Heeger model, we have investigated the effects of charged polarons on the static polarizability, axx, and the second order hyperpolarizabilities, γxxxx, of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on αxx and γxxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of αxx and γxxxx increase as the on-site Coulomb interaction U increases for U 〈 Uc and decrease with U for U 〉 Uc, where Uc is a critical value of U at which the static polarizability or the second order hypcrpolarizability reaches a maximal value of αxx or γxxxx. It is found that the effect of the e-e interaction on the value of αxx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γxxxx is sensitive both to the ratio of U to V and to the size of the molecule.展开更多
Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fiel...Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.展开更多
Two kinds of paclitaxel(PTX) conjugate micelles,of which one contained 25%(mass fraction) PTX [M(PTX)] and the other contained 22.5%(mass fraction) of PTX and 1.4%(mass fraction) of folate(FA)[FA-M(PTX)]...Two kinds of paclitaxel(PTX) conjugate micelles,of which one contained 25%(mass fraction) PTX [M(PTX)] and the other contained 22.5%(mass fraction) of PTX and 1.4%(mass fraction) of folate(FA)[FA-M(PTX)],were prepared for cell apoptosis and anti-tumor activity evaluation on U14 cervical cancer mouse models in comparison with 0.9%(mass fraction) saline(control) and equivalent Taxol.Seven days after tail intravenous injection of the drugs,the mice were sacrificed to measure the tumor masses.The average tumor masses were 4.26,2.89,2.63,and 2.17 g for the control,Taxol,M(PTX) and FA-M(PTX) groups,respectively.The inhibition rates of tumor growth calculated for the three drug groups were 32%,38% and 49%,respectively.Flow cytometry(FC) analysis and terminal deoxynucleotidyl transferase(TdT)-mediated deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) assay were conducted on the cancer tissues.The cell apoptosis rates based on the FC data and the TUNEL data were 20%,31%,37%,42%,and 10%,22%,26%,34%,respectively,both showing statistically significant differences(P〈0.05) between three drug groups and the control group,and between the FA-M(PTX) group and the other two drug groups.In conclusion,the composite FA-M(PTX) micelles can be used for U14 cervical cancer treatment.展开更多
A series of liquid crystalline polymers with two-dimensional mesogenic units were synthesized by solution polycondensation at low temperature. All the polymers were liquid crystalline. The melting temperature T;(exce...A series of liquid crystalline polymers with two-dimensional mesogenic units were synthesized by solution polycondensation at low temperature. All the polymers were liquid crystalline. The melting temperature T;(except that with substituent of methoxy) and the clearing temperature T;of the polymers change regularly with varying of the length of the alkyl substituent groups.展开更多
A series of 'liquid crystal polymers with two-dimensional mesogeuic units' were synthesized by the polycondensations of the monomer 2, 5-dihydroxybenzylidene-4-phenetidine with a diacid chloride selected from ...A series of 'liquid crystal polymers with two-dimensional mesogeuic units' were synthesized by the polycondensations of the monomer 2, 5-dihydroxybenzylidene-4-phenetidine with a diacid chloride selected from a series of α, ω-bis(4-chloroformylphenyloxy)carbonylalkues. This is the first series of polymers reported under the newly proposed concept 'liquid crystal polymers with two dimensional mesogenic units'.展开更多
基金supported by the Ministry of Science and Technology of China(grant nos.2018YFA0703200 and 2022YFB3603800)the Natural Science Foundation of China(grant nos.21875259,52233010,51725304,61890943,and 22021002)+3 种基金the CAS Project for Young Scientists in Basic Research(grant no.YSBR-053)the Youth Innovation Promotion Association of the Chinese Academy of Sciences,the National Program for Support of Top-notch Young Professionals,the Beijing National Laboratory for Molecular Sciences(grant no.BNLMS-CXXM-202012)the Key Research Program of the Chinese Academy of Sciences(grant no.XDPB13)K.C.Wong Education Foundation(grant no.GJTD-2020-02).
文摘Semiconducting two-dimensional conjugated polymers(2DCPs)with strong fluorescence emission have great potential for various optoelectronic applications.However,it is enormously challenging to achieve this goal due to the significant compact interlayerπ-πstacking-induced quenching effect in these systems.In this work,we found that highly fluorescent semiconducting 2DCPs can be prepared through an effective side-chain engineering approach in which interlayer spacers are introduced to reduce the fluorescence quenching effect.The obtained two truxene-based 2DCP films that,along with-C6H13 and-C_(12)H_(25)alkyl side chains as interlayer spacers both demonstrate superior fluorescence properties with a high photoluminescence quantum yield of 5.6%and 14.6%,respectively.These are among the highest values currently reported for 2DCP films.Moreover,an ultralong isotropic quasi-twodimensional exciton diffusion length constrained in the plane with its highest value approaching 110 nm was revealed by the transient photoluminescence microscopy technique,suggesting that theπ-conjugated structure in these truxene-based 2DCP films has effectively been extended.This work can enable a broad exploration of highly fluorescent semiconducting 2DCP films for more deeply fundamental properties and optoelectronic device applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2C2004109)the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0020612,2022 The Competency Development Program for Industry Specialist).
文摘Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020MA070).
文摘By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.
基金The work was financially supported by the National Natural Science Foundation of China(No.52173135,22207024)Jiangsu Specially Appointed Professorship,Leading Talents of Innovation and Entrepreneurship of Gusu(ZXL2022496)the Suzhou Science and Technology Program(SKY2022039).
文摘Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials.
文摘Enhancing catalytic activity of multi-enzyme in vitro through substrate channeling effect is promis-ing yet challenging.Herein,conjugated microporous polymers(CMPs)-scaffolded integrated en-zyme cascade systems(I-ECSs)are constructed through co-entrapping glucose oxidase(GOx)and horseradish peroxidase(HRP),in which hydrogen peroxide(H_(2)O_(2)) is the intermediate product.The interplay of low-resistance mass transfer pathway and appropriate pore wall-H_(2)O_(2) interactions facilitates the directed transfer of H_(2)O_(2),resulting in 2.4-fold and 5.0-fold elevation in catalytic activ-ity compared to free ECSs and separated ECSs,respectively.The substrate channeling effect could be regulated by altering the mass ratio of GOx to HRP.Besides,I-ECSs demonstrate excellent stabili-ties in harsh environments and multiple recycling.
基金Science Foundation for Distinguished Young Scholars in Tianjin,Grant/Award Number:19JCJQJC61700National Natural Science Foundation of China,Grant/Award Numbers:51773147,51973151,52130303National Key R&D Program of China,Grant/Award Number:2022YFB3805702。
文摘Lithium(Li)metal anodes have attracted extensive attention due to their ultrahigh theoretical capacity and low potential.However,the uneven deposition of Li near the unstable electrode/electrolyte interfaces leads to the growth of Li dendrites and the degradation of active electrodes.Herein,we directly fluorinate alkyne-containing conjugated microporous polymers(ACMPs)microspheres with fluorine gas(F_(2))to introduce a novel fluorinated interlayer as an interfacial stabilizer in lithium metal batteries.Using density functional theory methods,it is found that as-prepared fluorinated ACMP(FACMP)has abundant partially ionic C–F bonds.The C–F bonds with electrochemical lability yield remarkable lithiophilicity during cycling.The in situ reactions between the active C–F bonds and Li ions enable transfer of lithium fluoride microcrystals to the solid electrolyte interphase(SEI)layers,guaranteeing effective ionic distribution and smooth Li deposition.Consequently,Li metal electrodes with the fluorinated interlayers demonstrate excellent cycling performances in both half-batteries and full cells with a lithium bis(trifluoromethanesulfonyl)imide electrolyte as well as a nonfluorinated lithium bis(oxalate)borate electrolyte system.This strategy is highly significant in customizable SEI layers to stabilize electrode interfaces and ensure high utilization of Li metal anodes,especially in a nonfluorinated electrolyte.
基金The National Key Research and Development Program of China(2021YFA1502000 and 2022YFA1505300)the National Natural Science Foundation of China (22288102, 22072124)+1 种基金support from Beijing Synchrotron Radiation Facility (1W1B, BSRF)China Scholarship Council for the financial support。
文摘With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu^(2+)and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More importantly,interfacial transfer of electrons from Cu core to the CuN4-based CCP nanoshell was observed within the resulting CuTAB@Cu,which was found to enrich the local electronic density of the CuN4sites.As such,the CuTAB@Cu demonstrates much improved affinity to the*COOH intermediate formed from the rate determining step;the energy barrier for C-C coupling,which is critical to convert CO_(2)into C2products,is also decreased.Accordingly,it delivers a current density of-9.1 mA cm^(-2)at a potential as high as 0.558 V(vs.RHE) in H-type cell and a Faraday efficiency of 46.4% for ethanol.This work emphasizes the profound role of interfacial interaction in tuning the local electronic structure and activating the CuN4-based CCPs for efficient electroreduction of CO_(2).
基金the financial support from the National Natural Science Foundation of China(22005099)。
文摘Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction.In the present contribution,we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer,named CoPPc-TFPPy-CP,and also explored its electro-catalytic application in carbon dioxide reduction to liquid products in an aqueous solution.In the catalyst,cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages,leading to mesoporous formation polymers with the pore size centered at 4.1nm.And the central co-balt atoms shifted to a higher oxidation state after condensation.With these chemical and structural natures,the catalyst displayed a remarkable electrocatalytic CO_(2) reduction performance with an ethanol Faradaic efficiency of 43.25%at-1.0V vs RHE.While at the same time,the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen.To the best of our knowledge,CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO_(2) with a remarkable selectivity.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT (MSIT) (Grant Nos.2023R1A2C2008021 and RS-2023-00217270)supported by the Technology Innovation Program (Grant No.20017439,“Development of manufacturing process technique on high-speed signal transmission line for 6G device,”and Grant No.20021915,“Development on Nanocomposite Material of Optical Film[GPa]for Foldable Devices”)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea).
文摘This study attempts to develop a reproducible thin-film formation technique called vacuum-free(VF)lamination,which transfers thin films using elastomeric polymer-based laminating mediators.Precisely,by controlling the interface characteristics of the mediator based on the work of adhesion,VF lamination is successfully performed for various thicknesses(from 20 to 240 nm)of a conjugated photoactive material composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-bʹ]dithiophene))-alt-(5,5-(1ʹ,3ʹ-di-2-thienyl-5ʹ,7ʹ-bis(2-ethylhexyl)benzo[1ʹ,2ʹ-c:4ʹ,5ʹ-cʹ]dithiophene-4,8-dione)](a polymer donor)and 2,2ʹ-((2Z,2ʹZ)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2ʹʹ,3ʹʹ:4ʹ,5ʹ]thieno[2ʹ,3ʹ:4,5]pyrrolo[3,2-g]thieno[2ʹ,3ʹ:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(a nonfullerene acceptor).Interestingly,the organic photovoltaic and photodetecting applications,prepared by the VF lamination process,showed superior performance compared to those of devices prepared by conventional spin-coating.This is due to the overturned surface morphology,which led to enhanced charge transport ability and blocking of the externally injected charge.Thus,the reproducible VF lamination process,exploiting an adhesion-based elastomeric polymer mediator,is a promising thin-film formation technique for developing efficient next-generation organic optoelectronic materials consistent with the solution process.
基金Financial support from National Natural Science Foundation of China(Nos.51702056 and 51772135)the Ministry of Education of China(6141A02022516)China Postdoctoral Science Foundation(2017M622902 and 2019T120790).
文摘Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.
基金supported by the National Natural Science Foundation of China(No.20573049).
文摘A novel conjugated polymer containing azobenzene and oxadiazole units was synthesized through multi-step synthesis. The structures and properties of monomer and polymer were characterized and evaluated with IR, ^1H NMR, UV, TGA and GPC, respectively. Polymer with long side chain of alkoxy shows good solubility, thermal stability and photoisomerization property.
文摘A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ = 190-800 nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃ 〉 300 ℃ 〉 340 ℃ 〉 220 ℃ 〉 180 ℃.
文摘The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of these polyers were characterized by elemental analysis,transmission electron microscope,DTA,IR, UV Vis,fluorescence and EPR spectra. It has been found that these conjugated polymers have the property of intrinsic semiconductor. The conductivity σ 298K of these polymers is in the range of 10 -9  ̄10 -3 S · cm -1 under pressure 10.63 MPa and incremental in the metal orderMn < Co<Fe<Zn<Cu<Ni.\ The photosensitivity of the MS 8Pz to the CdS PVA films is incremental in the metal order Zn < Mn < Co < Fe < Cu < Ni.
基金This work was supported by the National Natural Science Foundation of China (No. 29725410 and 29992530) and Chinese Academy of Sciences (KJ951-A1-501-01).
文摘A novel bipolar conjugated polymer containing triphenylamine and 1, 3, 4-oxadiazole units was synthesized by Suzuki reaction. Its structure and properties were characterized by NMR, IR, UV-Vis, PL spectroscopy and electrochemical measurement. The photoluminescent spectroscopy and cyclic voltammograms measurement demonstrated that the resulting polymer shows blue emission (477 nm) and possesses both electron and hole-transporting property.
基金Project supported by the National Natural Science Foundation of China(Grant No.21204058)
文摘Soft-stamped nanoimprint lithography(NIL) is considered as one of the most effective processes of nanoscale patterning because of its low cost and high throughput. In this work, this method is used to emboss the poly(9, 9-dioctylfluorene)film. By reducing the linewidth of the nanogratings on the stamp, the orientations of nanocrystals are confined along the grating vector in the nanoimprint process, where the confinement linewidth is comparable to the geometrical size of the nanocrystal. When the linewidth is about 400 nm, the poly(9, 9-dioctylfluorene)(PFO) nanocrystals could be orderly arranged in the nanogratings, so that both pattern transfer and well-aligned nanocrystal arrangement could be achieved in a single step by the soft-stamped NIL. The relevant mechanism of the nanocrystalline alignment in these nanogratings is fully discussed. The modulation of nanocrystal alignment is of benefit to the charge mobilities and other performances of PFO-based devices for the future applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.10574037)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-05-0262)+3 种基金the Hebei Provincial Outstanding Youth Science Fund(Grant No.A2009001512)the Key Project of Ministry of Education of China(Grant No.210021)the Natural Science Fund of Hebei Province,China(Grant No.A2010000357)the Educational Commission of Hebei Province, China(Grant No.2007124)
文摘According to the one-dimensional tight-binding Su-Schrieffer-Heeger model, we have investigated the effects of charged polarons on the static polarizability, axx, and the second order hyperpolarizabilities, γxxxx, of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on αxx and γxxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of αxx and γxxxx increase as the on-site Coulomb interaction U increases for U 〈 Uc and decrease with U for U 〉 Uc, where Uc is a critical value of U at which the static polarizability or the second order hypcrpolarizability reaches a maximal value of αxx or γxxxx. It is found that the effect of the e-e interaction on the value of αxx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γxxxx is sensitive both to the ratio of U to V and to the size of the molecule.
基金financially supported by the National Natural Science Foundation of China(51403126,21574080,61306018 and 21504057)Shanghai Committee of Science and Technology(15JC1490500,16JC1400703,and 17ZR1441700)+1 种基金Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201702,Fuzhou University)State Key Laboratory of Supramolecular Structure and Materials(sklssm201732,Jinlin University)
文摘Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.
基金Supported by the National Natural Science Foundation of China(Nos.20674084,21004062,51103148)the National Basic Research Program of China(No.2009CB930102)the National High-Tech Research and Development Program of China(No.2007AA03Z535)
文摘Two kinds of paclitaxel(PTX) conjugate micelles,of which one contained 25%(mass fraction) PTX [M(PTX)] and the other contained 22.5%(mass fraction) of PTX and 1.4%(mass fraction) of folate(FA)[FA-M(PTX)],were prepared for cell apoptosis and anti-tumor activity evaluation on U14 cervical cancer mouse models in comparison with 0.9%(mass fraction) saline(control) and equivalent Taxol.Seven days after tail intravenous injection of the drugs,the mice were sacrificed to measure the tumor masses.The average tumor masses were 4.26,2.89,2.63,and 2.17 g for the control,Taxol,M(PTX) and FA-M(PTX) groups,respectively.The inhibition rates of tumor growth calculated for the three drug groups were 32%,38% and 49%,respectively.Flow cytometry(FC) analysis and terminal deoxynucleotidyl transferase(TdT)-mediated deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) assay were conducted on the cancer tissues.The cell apoptosis rates based on the FC data and the TUNEL data were 20%,31%,37%,42%,and 10%,22%,26%,34%,respectively,both showing statistically significant differences(P〈0.05) between three drug groups and the control group,and between the FA-M(PTX) group and the other two drug groups.In conclusion,the composite FA-M(PTX) micelles can be used for U14 cervical cancer treatment.
基金This work was supported by the FEYUT, SEDC, CHINA and by the National Natural Science Foundation of China.
文摘A series of liquid crystalline polymers with two-dimensional mesogenic units were synthesized by solution polycondensation at low temperature. All the polymers were liquid crystalline. The melting temperature T;(except that with substituent of methoxy) and the clearing temperature T;of the polymers change regularly with varying of the length of the alkyl substituent groups.
文摘A series of 'liquid crystal polymers with two-dimensional mesogeuic units' were synthesized by the polycondensations of the monomer 2, 5-dihydroxybenzylidene-4-phenetidine with a diacid chloride selected from a series of α, ω-bis(4-chloroformylphenyloxy)carbonylalkues. This is the first series of polymers reported under the newly proposed concept 'liquid crystal polymers with two dimensional mesogenic units'.