In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensiona...In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensional images. The current and effective power signals from an elevator traction machine are collected to generate gray-scale binary images. The improved two-dimensional convolution neural network is used to extract deep features from the images for classification, so as to recognize the elevator working conditions. Furthermore, the oscillation criterion is proposed to describe and analyze the active power oscillations. The current and active power are used to synchronously describe the working condition of the elevator, which can explain the co-occurrence state and potential relationship of elevator data. Based on the improved integration of local features of the time series, the recognition accuracy of the proposed 2DCNN is 97.78%, which is better than that of a one-dimensional convolution neural network. This research can improve the real-time monitoring and visual analysis performance of the elevator maintenance personnel, as well as improve their work efficiency.展开更多
Ground and space-based observations of the geomagnetic field are usually a superposition of different sources from the Earth’s core,lithosphere,ocean,ionosphere,and magnetosphere,and also from field-aligned currents ...Ground and space-based observations of the geomagnetic field are usually a superposition of different sources from the Earth’s core,lithosphere,ocean,ionosphere,and magnetosphere,and also from field-aligned currents coupling the ionosphere and magnetosphere—the meridional currents that connect the two hemispheres and the induced currents due to the variations of fields over time.The fluctuation of magnetic fields generated by these highly dynamic space currents greatly limits the accuracy of the geomagnetic models.In order to better accomplish the scientific objectives of Macao Science Satellite-1(MSS-1),and to improve existing geomagnetic field models,we present here for the first time a self-consistent coupling of solar wind,magnetosphere,and ionosphere,which represents the most developed numerical simulation method for space physics research so far,making it possible to quantify the contribution of different current systems to the total observed magnetic field(B).The results show that numerical simulation can capture main magnetic disturbance characteristics with significant precision.Partial ring current is a major contributor to the latitudinal magnetic perturbation near the equator.Magnetopause and magnetotail currents affect the radial magnetic perturbation around the mid-latitudes.Field-aligned and Pedersen currents produce significant longitudinal and latitudinal magnetic perturbations at high latitudes.展开更多
We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harm...We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential param- eter, magnetic field strength, AB flux field, and magnetic quantum number by means of the Nikiforov Uvarov (NU) method. The non-relativistic limit, PHO, and harmonic oscillator solutions in the existence and absence of external fields are also obtained.展开更多
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ...High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.展开更多
In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of ...In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).展开更多
Effect of direct current electric field (DCEF) on corrosion behaviour of copper printed circuit board (PCB-Cu), Cl-ion migration behaviour, dendrites growth under thin electrolyte layer was investigated using pote...Effect of direct current electric field (DCEF) on corrosion behaviour of copper printed circuit board (PCB-Cu), Cl-ion migration behaviour, dendrites growth under thin electrolyte layer was investigated using potentiodynamic polarization and scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS). Results indicate that DCEF decreases the corrosion of PCB-Cu;Cl-ions directionally migrate from the negative pole to the positive pole, and enrich on the surface of the positive pole, which causes serious localized corrosion; dendrites grow on the surface of the negative pole, and the rate and scale of dendrite growth become faster and greater with the increase of external voltage and exposure time, respectively.展开更多
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul...The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.展开更多
In field emission devices, the emission current sometimes degrades with the time. The mechanism of the current degradation is complicated. In this paper, a program is used to simulate the movement of the electron beam...In field emission devices, the emission current sometimes degrades with the time. The mechanism of the current degradation is complicated. In this paper, a program is used to simulate the movement of the electron beam from a field emitter. According to the current distribution and the trajectories of the primary electron beam, it is shown that the residual gas is ionized and the ion pairs are generated. The trajectories of the positive ions are simulated. With the different locations and kinetic energy of i...展开更多
The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean curren...The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.展开更多
In this paper, integrating the Yangtze Estuary with the Hangzhou Bay, a 2-D velocity field model is established. In the model, fine self-adaptive grids are employed to adapt to the complicated coastal shape. The hydro...In this paper, integrating the Yangtze Estuary with the Hangzhou Bay, a 2-D velocity field model is established. In the model, fine self-adaptive grids are employed to adapt to the complicated coastal shape. The hydrodynamic equations satisfied by two contravariant components of velocity vector and surface elevation in non-orthogonal curvilinear coordinates are used. In each momentum equation the coefficients before the two partial derivatives of surface elevation with respect to variables of alternative direction coordinates have different orders of magnitude, i. e., the derivative with the larger coefficient may play a more important role than that with the smaller one. With this advantage, the ADI scheme can be easily employed. The hydrodynamic factors include tidal current, river runoff and wind-induced current. In terms of tidal current, seven main constituents in the area are considered in the open boundaries. The verifications of surface elevation process and current velocity process in the spring tide and in the neap tide show that the model can preferably reflect current fields in the area. Through the simulation of Lagrangian residual current fields in summer and in winter, the paths of the exchange of water and sediment between the Yangtze Estuary and the Hangzhou Bay are elementarily discussed.展开更多
For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for ...For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for partial recovery of the visual field defect that can be achieved through induction of neuroplasticity.Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy.It is maintained throughout life and just as neurological rehabilitation can improve motor coordination,visual field defects in glaucoma,diabetic retinopathy or optic neuropathy can be improved by inducing neuroplasticity.In ophthalmology many new treatment paradigms have been tested that can induce neuroplastic changes,including non-invasive alternating current stimulation.Treatment with alternating current stimulation(e.g.,30 minutes,daily for 10 days using transorbital electrodes and^10 Hz)activates the entire retina and parts of the brain.Electroencephalography and functional magnetic resonance imaging studies revealed local activation of the visual cortex,global reorganization of functional brain networks,and enhanced blood flow,which together activate neurons and their networks.The future of low vision is optimistic because vision loss is indeed,partially reversible.展开更多
Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ra...Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ray diffractometry and laser particle analysis.The results indicated that current efficiencies of electrolytic copper powders under super gravity field increased by more than 20% compared with that under normal gravity condition.Cell voltage under super gravity field was also much lower.The size of copper powders decreased with the increase of gravity coefficient(G).The increase of current efficiency can be contributed to the disturbance of electrode/electrolyte interface and enhanced mass transfer of Cu2+ in super gravity field.Meanwhile,the huge gravity acceleration would promote the detachment of copper powders from electrode surface during electrolytic process,which can prevent the growth of copper powders.展开更多
The investigation on bubble behavior in electric field helps to analyze the mechanism of electric enhancement of boiling heat transfer. Experiments were performed to investigate the bubble deformation in direct curre...The investigation on bubble behavior in electric field helps to analyze the mechanism of electric enhancement of boiling heat transfer. Experiments were performed to investigate the bubble deformation in direct current (DC) electric field with bubbles attached to the orifice. The air bubbles were slowly generated in the transformer oil pool at different orifices, so that the effect of flow on bubble shape was eliminated. The results showed that the bubbles were elongated and the departure volume decreased when the electric field was intensified. The major and minor axes, aspect ratio and departure volume increased with increasing the orifice diameter. Both the electric field and orifice size have great influence on bubble behavior. The bubble deformation was also simulated to compare with the experimental results. The numerical and experimental data qualitatively agree with each other.展开更多
The current crustal horizontal strain field is given in the paper based on the horizontal movement rates obtained from about 400 GPS stations located in Chinese mainland and its surrounding areas. The results show: a)...The current crustal horizontal strain field is given in the paper based on the horizontal movement rates obtained from about 400 GPS stations located in Chinese mainland and its surrounding areas. The results show: a) The horizontal strain in Chinese mainland is strong in the west and weak in the east and the shear strain is larger than the normal strain (absolute magnitude). The general strain magnitude is 10-8/a and in local regions is 10-7/a, but the strain distribution is not homogeneous; b) The regions with the most significant NS-trending strains are the Himalayas belt along the western segment of Chinese southern boundary, the segment of 36N~42N along the western boundary and the northern margin of Qaidam block; c) The EW-trending strain variation along the western margin is the maximum and it is characterized by the alternatively positive and negative variations from the west to the east; d) The regions with larger magnitudes of REN (NE-trending shear strain) and Rmax (maximum shear strain) are Himalayas belt, the segment of 36N~42N along the western boundary, the western part of Qaidam block, Sichuan-Yunnan (Chuan-Dian) rhombic block and the border area of Alxa, Qilian and Tarim blocks; e) The surrounding area of Qinghai-Xizang (Qingzang) block is mainly superfacial contraction and its interior is basically superfacial expansion. The area to its north is mainly superfacial contraction with the maximum magnitude along the western boundary and the minimum magnitude in the eastern part (except Yanshan tectonic zone); f) In the west of the western part, the principal compressive strain is in the SN direction and the principal tensile strain is in the EW direction, while in the eastern margin area of the western part, the principal compressive strain is proximate EW and the principal tensile strain is about SN. The principal strain direction of Chuan-Dian rhombic block has changed greatly. In the northern part, it is compression in the EW and tension in the SN, while in the southern part, it is just the opposite; g) The strain pattern in Chinese mainland might be the integration of block mode and successive deformation mode. In addition, the shear strain might be the small-scale dominant strain. Such a result might be resulted from the collision of Indian plate and the boundaries coupling, and it is also closely related to the motion of deep-seated matters and the physical nature of crustal medium. Therefore, it should be noted that since the GPS stations are not homogenous in spatial distribution, the obtained strain fields and the scales of the strain should be different.展开更多
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites...A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.展开更多
Theoretical analysis is made on the temperature field at the time of pulse current discharge in a metal structure with an elliptical embedding crack. In finding the temperature field, analogy between the current flow ...Theoretical analysis is made on the temperature field at the time of pulse current discharge in a metal structure with an elliptical embedding crack. In finding the temperature field, analogy between the current flow through an elliptical embedding crack and the fluid flow through a barrier is made based on the similarity principle. Boundary conditions derived from this theory are introduced so that the distribution of current density and the temperature field expressions can be obtained. The study provides a theoretic basis to the applications of stopping spatial crack with electromagnetic heating.展开更多
The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are ...The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.展开更多
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre...To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.展开更多
Eddy currents produced by a time-varying magnetic field will introduce time delay and thus affect field quality. This effect leads to drifting of the beam position over time, especially for a compact synchrotron.Simul...Eddy currents produced by a time-varying magnetic field will introduce time delay and thus affect field quality. This effect leads to drifting of the beam position over time, especially for a compact synchrotron.Simulations and measurements of different dipoles have been performed, to investigate the time delay and field quality. The simulations are conducted using OPERA software. The measurements are conducted using a long coil and Hall sensor. All results show that the magnetic field deviation is up to 0.4% for the dipole with stainless steel endplates. The simulations show that the main sources of eddy current are the field saturation effect and the field component Bz, introduced by the bedstead-type coil. Field correction using a power supply is adopted to reduce the deviation to less than 0.02%.展开更多
Magnetic flux density around the weld area was used to reconstruct the current density distribution during resistance spot welding(RSW) of aluminum alloy according to inverse problem theory. A current-magnetic field m...Magnetic flux density around the weld area was used to reconstruct the current density distribution during resistance spot welding(RSW) of aluminum alloy according to inverse problem theory. A current-magnetic field model was established and the conjugate gradient method was used to solve this model. The results showed that the current density was low at the center of nugget while high on the edge of nugget. Moreover, the welding time of 30ms—60 ms is a key period for nucleation. The current density distribution can reflect whether the weld nugget is formed or splashed, therefore it has the potential to monitor the weld quality of RSW.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.61771223)the Key Research and Development Program of Jiangsu Province(Grant No.SBE2018334)。
文摘In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensional images. The current and effective power signals from an elevator traction machine are collected to generate gray-scale binary images. The improved two-dimensional convolution neural network is used to extract deep features from the images for classification, so as to recognize the elevator working conditions. Furthermore, the oscillation criterion is proposed to describe and analyze the active power oscillations. The current and active power are used to synchronously describe the working condition of the elevator, which can explain the co-occurrence state and potential relationship of elevator data. Based on the improved integration of local features of the time series, the recognition accuracy of the proposed 2DCNN is 97.78%, which is better than that of a one-dimensional convolution neural network. This research can improve the real-time monitoring and visual analysis performance of the elevator maintenance personnel, as well as improve their work efficiency.
基金supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)Natural Science Foundation of Shanghai’s Science and Technology Innovation Action Plan(General Program:No.22ZR1472900)+4 种基金Study on the Environment and Dynamics of Earth’s Inner Magnetospheric Particles and the Needs of Space-based Exploration(Grant No.D-2022-09-13-001)Hong Kong-Macao-Taiwan Cooperation Funding of Shanghai Committee of Science and Technology(Grant No.19590761300)Shanghai 2022“Science and Technology Innovation Action Plan”Hong Kong,Macao and Taiwan Science and Technology Cooperation Project(Grant No.22590760900)Shanghai Postdoctoral Daily Funding(Grant No.K-2021-12-16001)。
文摘Ground and space-based observations of the geomagnetic field are usually a superposition of different sources from the Earth’s core,lithosphere,ocean,ionosphere,and magnetosphere,and also from field-aligned currents coupling the ionosphere and magnetosphere—the meridional currents that connect the two hemispheres and the induced currents due to the variations of fields over time.The fluctuation of magnetic fields generated by these highly dynamic space currents greatly limits the accuracy of the geomagnetic models.In order to better accomplish the scientific objectives of Macao Science Satellite-1(MSS-1),and to improve existing geomagnetic field models,we present here for the first time a self-consistent coupling of solar wind,magnetosphere,and ionosphere,which represents the most developed numerical simulation method for space physics research so far,making it possible to quantify the contribution of different current systems to the total observed magnetic field(B).The results show that numerical simulation can capture main magnetic disturbance characteristics with significant precision.Partial ring current is a major contributor to the latitudinal magnetic perturbation near the equator.Magnetopause and magnetotail currents affect the radial magnetic perturbation around the mid-latitudes.Field-aligned and Pedersen currents produce significant longitudinal and latitudinal magnetic perturbations at high latitudes.
文摘We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein Gordon (KG) particle subjected to an equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential param- eter, magnetic field strength, AB flux field, and magnetic quantum number by means of the Nikiforov Uvarov (NU) method. The non-relativistic limit, PHO, and harmonic oscillator solutions in the existence and absence of external fields are also obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No.12064034)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China (Grant No.2020GKLRLX08)+2 种基金the Natural Science Foundation of Ningxia Hui Auatonomous Region,China (Grant Nos.2022AAC03643,2022AAC03117,and 2018AAC03029)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China (Grant No.2022BDE03006)the Natural Science Project of the Higher Education Institutions of Ningxia Hui Autonomous Region,China (Grant No.13-1069)。
文摘High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574060)the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Shandong Provincal Higher Educational Science and Technology Program of China (Grant Nos. J09LA07 and J10LA15)
文摘In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).
基金Project(50871044)supported by the National Natural Science Foundation of ChinaProject(2012M511207)supported by the Postdoctoral Science Foundation of ChinaProject(10122011)supported by the Science Research Foundation of Wuhan Institute Technology,China
文摘Effect of direct current electric field (DCEF) on corrosion behaviour of copper printed circuit board (PCB-Cu), Cl-ion migration behaviour, dendrites growth under thin electrolyte layer was investigated using potentiodynamic polarization and scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS). Results indicate that DCEF decreases the corrosion of PCB-Cu;Cl-ions directionally migrate from the negative pole to the positive pole, and enrich on the surface of the positive pole, which causes serious localized corrosion; dendrites grow on the surface of the negative pole, and the rate and scale of dendrite growth become faster and greater with the increase of external voltage and exposure time, respectively.
基金Projects(51074031,51271042,50874022)supported by the National Natural Science Foundation of ChinaProject(2013M530913)supported by the China Postdoctoral Science FoundationProject(DUT12RC(3)35)supported by the Fundamental Research Funds for the Central Universities of China
文摘The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.
文摘In field emission devices, the emission current sometimes degrades with the time. The mechanism of the current degradation is complicated. In this paper, a program is used to simulate the movement of the electron beam from a field emitter. According to the current distribution and the trajectories of the primary electron beam, it is shown that the residual gas is ionized and the ion pairs are generated. The trajectories of the positive ions are simulated. With the different locations and kinetic energy of i...
基金The National Natural Science Foundations of China under contract Nos40406009,40333030and40706013
文摘The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.
基金National Natural Science Foundation of China under contract No.49776279National Excellent Youth Foundation of China under contract No.49825161
文摘In this paper, integrating the Yangtze Estuary with the Hangzhou Bay, a 2-D velocity field model is established. In the model, fine self-adaptive grids are employed to adapt to the complicated coastal shape. The hydrodynamic equations satisfied by two contravariant components of velocity vector and surface elevation in non-orthogonal curvilinear coordinates are used. In each momentum equation the coefficients before the two partial derivatives of surface elevation with respect to variables of alternative direction coordinates have different orders of magnitude, i. e., the derivative with the larger coefficient may play a more important role than that with the smaller one. With this advantage, the ADI scheme can be easily employed. The hydrodynamic factors include tidal current, river runoff and wind-induced current. In terms of tidal current, seven main constituents in the area are considered in the open boundaries. The verifications of surface elevation process and current velocity process in the spring tide and in the neap tide show that the model can preferably reflect current fields in the area. Through the simulation of Lagrangian residual current fields in summer and in winter, the paths of the exchange of water and sediment between the Yangtze Estuary and the Hangzhou Bay are elementarily discussed.
文摘For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for partial recovery of the visual field defect that can be achieved through induction of neuroplasticity.Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy.It is maintained throughout life and just as neurological rehabilitation can improve motor coordination,visual field defects in glaucoma,diabetic retinopathy or optic neuropathy can be improved by inducing neuroplasticity.In ophthalmology many new treatment paradigms have been tested that can induce neuroplastic changes,including non-invasive alternating current stimulation.Treatment with alternating current stimulation(e.g.,30 minutes,daily for 10 days using transorbital electrodes and^10 Hz)activates the entire retina and parts of the brain.Electroencephalography and functional magnetic resonance imaging studies revealed local activation of the visual cortex,global reorganization of functional brain networks,and enhanced blood flow,which together activate neurons and their networks.The future of low vision is optimistic because vision loss is indeed,partially reversible.
基金Projects(50804043, 50674011) supported by the National Natural Science Foundation of ChinaProject(KZCX2-YW-412-2) supported the Knowledge Innovation Program of Chinese Academy of Sciences
文摘Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ray diffractometry and laser particle analysis.The results indicated that current efficiencies of electrolytic copper powders under super gravity field increased by more than 20% compared with that under normal gravity condition.Cell voltage under super gravity field was also much lower.The size of copper powders decreased with the increase of gravity coefficient(G).The increase of current efficiency can be contributed to the disturbance of electrode/electrolyte interface and enhanced mass transfer of Cu2+ in super gravity field.Meanwhile,the huge gravity acceleration would promote the detachment of copper powders from electrode surface during electrolytic process,which can prevent the growth of copper powders.
基金the National Key Basic Research Program of China (G2000026301)Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, China
文摘The investigation on bubble behavior in electric field helps to analyze the mechanism of electric enhancement of boiling heat transfer. Experiments were performed to investigate the bubble deformation in direct current (DC) electric field with bubbles attached to the orifice. The air bubbles were slowly generated in the transformer oil pool at different orifices, so that the effect of flow on bubble shape was eliminated. The results showed that the bubbles were elongated and the departure volume decreased when the electric field was intensified. The major and minor axes, aspect ratio and departure volume increased with increasing the orifice diameter. Both the electric field and orifice size have great influence on bubble behavior. The bubble deformation was also simulated to compare with the experimental results. The numerical and experimental data qualitatively agree with each other.
基金State Key Basic Research Development and Programming Project (G1998040703) the Project Physical Basic Study on Short-term Prediction for Strong Earthquakes during the tenth Five-Year Plan from Scientific and Technological Ministry.
文摘The current crustal horizontal strain field is given in the paper based on the horizontal movement rates obtained from about 400 GPS stations located in Chinese mainland and its surrounding areas. The results show: a) The horizontal strain in Chinese mainland is strong in the west and weak in the east and the shear strain is larger than the normal strain (absolute magnitude). The general strain magnitude is 10-8/a and in local regions is 10-7/a, but the strain distribution is not homogeneous; b) The regions with the most significant NS-trending strains are the Himalayas belt along the western segment of Chinese southern boundary, the segment of 36N~42N along the western boundary and the northern margin of Qaidam block; c) The EW-trending strain variation along the western margin is the maximum and it is characterized by the alternatively positive and negative variations from the west to the east; d) The regions with larger magnitudes of REN (NE-trending shear strain) and Rmax (maximum shear strain) are Himalayas belt, the segment of 36N~42N along the western boundary, the western part of Qaidam block, Sichuan-Yunnan (Chuan-Dian) rhombic block and the border area of Alxa, Qilian and Tarim blocks; e) The surrounding area of Qinghai-Xizang (Qingzang) block is mainly superfacial contraction and its interior is basically superfacial expansion. The area to its north is mainly superfacial contraction with the maximum magnitude along the western boundary and the minimum magnitude in the eastern part (except Yanshan tectonic zone); f) In the west of the western part, the principal compressive strain is in the SN direction and the principal tensile strain is in the EW direction, while in the eastern margin area of the western part, the principal compressive strain is proximate EW and the principal tensile strain is about SN. The principal strain direction of Chuan-Dian rhombic block has changed greatly. In the northern part, it is compression in the EW and tension in the SN, while in the southern part, it is just the opposite; g) The strain pattern in Chinese mainland might be the integration of block mode and successive deformation mode. In addition, the shear strain might be the small-scale dominant strain. Such a result might be resulted from the collision of Indian plate and the boundaries coupling, and it is also closely related to the motion of deep-seated matters and the physical nature of crustal medium. Therefore, it should be noted that since the GPS stations are not homogenous in spatial distribution, the obtained strain fields and the scales of the strain should be different.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04,KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.
基金Project supported by the National Natural Science Foundation of China (No.50675190)
文摘Theoretical analysis is made on the temperature field at the time of pulse current discharge in a metal structure with an elliptical embedding crack. In finding the temperature field, analogy between the current flow through an elliptical embedding crack and the fluid flow through a barrier is made based on the similarity principle. Boundary conditions derived from this theory are introduced so that the distribution of current density and the temperature field expressions can be obtained. The study provides a theoretic basis to the applications of stopping spatial crack with electromagnetic heating.
基金Department of Science and Technology of Jiangsu Province,China(No. BE2003-46).
文摘The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z132013T001)
文摘To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.
基金supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.20150210)
文摘Eddy currents produced by a time-varying magnetic field will introduce time delay and thus affect field quality. This effect leads to drifting of the beam position over time, especially for a compact synchrotron.Simulations and measurements of different dipoles have been performed, to investigate the time delay and field quality. The simulations are conducted using OPERA software. The measurements are conducted using a long coil and Hall sensor. All results show that the magnetic field deviation is up to 0.4% for the dipole with stainless steel endplates. The simulations show that the main sources of eddy current are the field saturation effect and the field component Bz, introduced by the bedstead-type coil. Field correction using a power supply is adopted to reduce the deviation to less than 0.02%.
基金Supported by the National Natural Science Foundation of China(No.51275342 and No.51275338)
文摘Magnetic flux density around the weld area was used to reconstruct the current density distribution during resistance spot welding(RSW) of aluminum alloy according to inverse problem theory. A current-magnetic field model was established and the conjugate gradient method was used to solve this model. The results showed that the current density was low at the center of nugget while high on the edge of nugget. Moreover, the welding time of 30ms—60 ms is a key period for nucleation. The current density distribution can reflect whether the weld nugget is formed or splashed, therefore it has the potential to monitor the weld quality of RSW.