Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t chall...Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t challenging par t for experimen tal demonstration of 2DES.Here,we present a tuto rial review on the 2DES proto cols based on active phase managements which are originally developed for quantum optics experiments.We introduce the 2DES techniques in box and pump-probe geometries with phase stabilization realized by interferometry,and outline the fully collinear 2DES approach with the frequency tagging by acoustic optical modulators and frequency combs.The combination of active phase managements,ultrashort pulses and other spectroscopic methods may open new opportunities to tackle essential challenges related to excited states.展开更多
Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aim...Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aims to provide a bridge between the principles and intuitive physical description of 2DES for tutorial purpose. Special emphasis is laid upon how 2DES circumvents the restrictions from both uncertainty principle and the wave-packet collapse during the coherent detection, leading to the successful detection of the coherence in terms of energy difference between the eigenstates showing as the quantum beats; then upon the possible mixing among the pure electronic transition, single-rnode and multi-mode coupled vibronic transition leading to the observed beating phenomena. Finally, recent ad- vances in experimentally distinguishing between the electronic coherence and the vibrational coherence are briefly discussed.展开更多
An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employe...An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employed for studying how the Functional Eigenstate of the Two-Dimensional Electron Gas (2DEG) dwelling within the Quantum Well of a typical Semiconductor Nanoheterointerface evolves versus (cryptographically) selectable consecutive Cumulative Photon Dose values. Thus, it is ultimately discussed that the experimentally observed (after a Critical Cumulative Photon Dose) Phenomenon of 2DEG Negative Differential Mobility allows for the Nanosystem to exhibit an Effective Qubit Specific Functionality potentially conducive to (Telecommunication) Quantum Information Registering.展开更多
Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-val...Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.展开更多
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte...The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.展开更多
The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity funct...The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.展开更多
The spatially-resolved laser-based high-resolution angle resolved photoemission spectroscopy(ARPES) measurements have been performed on the optimally-doped YBa_(2)Cu_(3)O_(7)-σ(Y123) superconductor. For the first tim...The spatially-resolved laser-based high-resolution angle resolved photoemission spectroscopy(ARPES) measurements have been performed on the optimally-doped YBa_(2)Cu_(3)O_(7)-σ(Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 were observed. The Fermi surface-dependent and momentum-dependent superconducting gap was determined which is nodeless and consistent with the d+is gap form.展开更多
Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal ...Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal stability,high thermal conductance,chemical inertness,and outstanding dielectric properties.However,to further optimize the performances from the view of structure-property relationship,the determinative factors such as crystallite sizes,layer thickness,dispersibility,and surface functionalities should be precisely controlled and adjusted.Therefore,in this review,the synthesis and functionalization methods including“top-down”and“bottom-up”strategies,and non-covalent and covalent modifications for 2D BN are systematically classified and discussed at first,thus catering for the requirements of versatile applications.Then,the progresses of 2D BN applied in the fields of microelectronics such as fieldeffect transistors and dielectric capacitors,energy domains such as thermal energy management and conversion,and batteries and supercapacitors are summarized to highlight the importance of 2D BN.Notably,these contents not only contain the state-of-the-art 2D BN composites,but also bring the current novel design of 2D BN-based microelectronic units.Finally,the challenges and perspectives are proposed to better broaden the scope of this material.Therefore,this review will pave an all-around way for understanding,utilizing,and applying 2D BN in future electronics and energy applications.展开更多
Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moi...Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction.展开更多
Twist-angle two-dimensional systems,such as twisted bilayer graphene,twisted bilayer transition metal dichalcogenides,twisted bilayer phosphorene and their multilayer van der Waals heterostructures,exhibit novel and t...Twist-angle two-dimensional systems,such as twisted bilayer graphene,twisted bilayer transition metal dichalcogenides,twisted bilayer phosphorene and their multilayer van der Waals heterostructures,exhibit novel and tunable properties due to the formation of Moirésuperlattice and modulated Moirébands.The review presents a brief venation on the development of"twistronics"and subsequent applications based on band engineering by twisting.Theoretical predictions followed by experimental realization of magic-angle bilayer graphene ignited the flame of investigation on the new freedom degree,twistangle,to adjust(opto)electrical behaviors.Then,the merging of Dirac cones and the presence of flat bands gave rise to enhanced light-matter interaction and gate-dependent electrical phases,respectively,leading to applications in photodetectors and superconductor electronic devices.At the same time,the increasing amount of theoretical simulation on extended twisted 2D materials like TMDs and BPs called for further experimental verification.Finally,recently discovered properties in twisted bilayer h-BN evidenced h-BN could be an ideal candidate for dielectric and ferroelectric devices.Hence,both the predictions and confirmed properties imply twist-angle two-dimensional superlattice is a group of promising candidates for next-generation(opto)electronics.展开更多
Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been ...Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson(DJ) perovskites. In this work, a serious of cycloalkane(CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional(DFT) calculations.We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV.These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.展开更多
Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe ...Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe are good 2D piezoelectric materials with large piezoelectric coefficients. The values of d11d11 of SnSi and SnGe are 5.04pm/V and 5.42pm/V, respectively, which are much larger than 2D MoS2 (3.6pm/V) and are comparable with some frequently used bulk materials (e.g., wurtzite AlN 5.1pm/V). Charge transfer is calculated by the L wdin analysis and we find that the piezoelectric coefficients (d11d11 and d31) are highly dependent on the polarizabilities of the anions and cations in group-IV monolayers.展开更多
Tin monoxide(SnO) is an interesting two-dimensional material because it is a rare oxide semiconductor with bipolar conductivity.However, the lower room temperature mobility limits the applications of SnO in the future...Tin monoxide(SnO) is an interesting two-dimensional material because it is a rare oxide semiconductor with bipolar conductivity.However, the lower room temperature mobility limits the applications of SnO in the future.Thus, we systematically investigate the effects of different layer structures and strains on the electron–phonon coupling and phonon-limited mobility of SnO.The A2uphonon mode in the high-frequency region is the main contributor to the coupling with electrons for different layer structures.Moreover, the orbital hybridization of Sn atoms existing only in the bilayer structure changes the conduction band edge and conspicuously decreases the electron–phonon coupling, and thus the electronic transport performance of the bilayer is superior to that of other layers.In addition, the compressive strain of ε=-1.0% in the monolayer structure results in a conduction band minimum(CBM) consisting of two valleys at the Γ point and along the M–Γ line, and also leads to the intervalley electronic scattering assisted by the Eg(-1)mode.However, the electron–phonon coupling regionally transferring from high frequency A2uto low frequency Eg(-1)results in little change of mobility.展开更多
Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterpa...Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures.展开更多
The ferromagnetism of two-dimensional(2D)materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic fra...The ferromagnetism of two-dimensional(2D)materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic framework materials(TM-NH MOF,TM=Sc-Zn)are designed,and their electronic and magnetic characters are systematically studied by means of first-principles calculations.Their structural stabilities are examined through binding energies and ab-initio molecular dynamics simulations.Their optimized lattice constants are correlated to the central TM atoms.These 2D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers.Interestingly,Ni-and Zn-NH MOFs are nonmagnetic semiconductors(SM)with band gaps of 0.41 eV and 0.61 eV,respectively.Co-and Cu-NH MOFs are bipolar magnetic semiconductors(BMS),while Fe-NH MOF monolayer is a half-semiconductor(HSM).Furthermore,the elastic strain could tune their magnetic behaviors and transformation,which ascribes to the charge redistribution of TM-3d states.This work predicts several new 2D magnetic MOF materials,which are promising for applications in spintronics and nanoelectronics.展开更多
Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides...Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.展开更多
To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) ...To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) (PMDA-ODA)/silica nanocomposite was investigated by two-dimensional ATR-FTIR spectroscopy, by which three states of water molecules owning different H-bonding strength were distinguished. The amounts and strength of H-bonding also played a significant role in determining the diffusion rate of the different states of water molecules. The type of aggregated water molecules which also formed H-bonding with silicic acid (residues) or polyimide system was the last one diffusing to the polymer side in contact with the ATR crystal element because the polymeric matrix blocked their diffusion to a great extent. The diffusion coefficient was also estimated to gain the information of the dynamic diffusion behavior.展开更多
Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in hig...Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.展开更多
To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonli...To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.展开更多
基金This work is supported by the National Key R&D Program of China(No.2017YFA0303700 and No.2018YFA0209101)the National Natural Science Foundation of China(No.21922302,No.21873047,No.11904168,No.91833305,and No.91850105)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central University.
文摘Two-dimensional elec tronic spec troscopy(2DES)is a powerful met hod to probe the coherent electron dynamics in complicated systems.Stabilizing the phase difference of the incident ultrashort pulses is the mos t challenging par t for experimen tal demonstration of 2DES.Here,we present a tuto rial review on the 2DES proto cols based on active phase managements which are originally developed for quantum optics experiments.We introduce the 2DES techniques in box and pump-probe geometries with phase stabilization realized by interferometry,and outline the fully collinear 2DES approach with the frequency tagging by acoustic optical modulators and frequency combs.The combination of active phase managements,ultrashort pulses and other spectroscopic methods may open new opportunities to tackle essential challenges related to excited states.
基金supported by the National Natural Science Foundation of China (No.21227003, No.21433014, No.11721404)
文摘Two dimensional Fourier transforrn electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase. This review aims to provide a bridge between the principles and intuitive physical description of 2DES for tutorial purpose. Special emphasis is laid upon how 2DES circumvents the restrictions from both uncertainty principle and the wave-packet collapse during the coherent detection, leading to the successful detection of the coherence in terms of energy difference between the eigenstates showing as the quantum beats; then upon the possible mixing among the pure electronic transition, single-rnode and multi-mode coupled vibronic transition leading to the observed beating phenomena. Finally, recent ad- vances in experimentally distinguishing between the electronic coherence and the vibrational coherence are briefly discussed.
文摘An “Eigenstate Adjustment Autonomy” Model, permeated by the Nanosystem’s Fermi Level Pinning along with its rigid Conduction Band Discontinuity, compatible with pertinent Experimental Measurements, is being employed for studying how the Functional Eigenstate of the Two-Dimensional Electron Gas (2DEG) dwelling within the Quantum Well of a typical Semiconductor Nanoheterointerface evolves versus (cryptographically) selectable consecutive Cumulative Photon Dose values. Thus, it is ultimately discussed that the experimentally observed (after a Critical Cumulative Photon Dose) Phenomenon of 2DEG Negative Differential Mobility allows for the Nanosystem to exhibit an Effective Qubit Specific Functionality potentially conducive to (Telecommunication) Quantum Information Registering.
基金supported by the Hainan Provincial Natural Science Foundation of China(222RC548)the National Natural Science Foun-dation of China(22109034,22109035,52164028,62105083,21805104)+3 种基金the Opening Project of Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province(KFKT2021007)the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20082,20083,20084,21065,21124,21125)the Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2022-89,Qhys2022-174)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China and the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province.
文摘Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.
基金Project support by the National Natural Science Foundation of China(Grant Nos.11704044 and 12074140)。
文摘The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
文摘The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101 and 11974404)the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800 and 2018YFA0704200)+3 种基金the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33000000)the Youth Innovation Promotion Association of CAS (Grant No. Y2021006)Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301800)the Synergetic Extreme Condition User Facility (SECUF)。
文摘The spatially-resolved laser-based high-resolution angle resolved photoemission spectroscopy(ARPES) measurements have been performed on the optimally-doped YBa_(2)Cu_(3)O_(7)-σ(Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 were observed. The Fermi surface-dependent and momentum-dependent superconducting gap was determined which is nodeless and consistent with the d+is gap form.
基金financialy supported by the National Key R@D Program of China (Grants 2016YBF0100100 and 2016YFA0200200)National Natural Science Foundation of China (Grants 51872283, and 21805273)+5 种基金Liaoning Bai Qian Wan Talents Program, Liao Ning Revitalization Talents Program (Grant XLYC1807153)Natural Science Foundation of Liaoning Province, Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802, and DICP I202032)Dalian National Laboratory For Clean Energy(DNL), CAS,DNL Cooperation Fund,CAS (DNL180310, DNL180308, DNL201912, and DNL201915)the Australian Research Council Discovery Program (DP190103290)Australian Research Council Discovery Early Career Researcher Award scheme (DE150101617)
文摘Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal stability,high thermal conductance,chemical inertness,and outstanding dielectric properties.However,to further optimize the performances from the view of structure-property relationship,the determinative factors such as crystallite sizes,layer thickness,dispersibility,and surface functionalities should be precisely controlled and adjusted.Therefore,in this review,the synthesis and functionalization methods including“top-down”and“bottom-up”strategies,and non-covalent and covalent modifications for 2D BN are systematically classified and discussed at first,thus catering for the requirements of versatile applications.Then,the progresses of 2D BN applied in the fields of microelectronics such as fieldeffect transistors and dielectric capacitors,energy domains such as thermal energy management and conversion,and batteries and supercapacitors are summarized to highlight the importance of 2D BN.Notably,these contents not only contain the state-of-the-art 2D BN composites,but also bring the current novel design of 2D BN-based microelectronic units.Finally,the challenges and perspectives are proposed to better broaden the scope of this material.Therefore,this review will pave an all-around way for understanding,utilizing,and applying 2D BN in future electronics and energy applications.
基金funded by the National Key Research and Development Program of China (2017YFA0204800/2016YFA0202403)the Fundamental Research Funds for the Central Universities (2018CBLZ006)+5 种基金the National Natural Science Foundation of China (61604091 and 61674098)the 111 Project (B14041)the Changjiang Scholar and Innovative Research Team (IRT_14R33)the Chinese National 1000 Talents Plan program (1110010341)the China Postdoctoral Science foundation (2018M633455)the Fundamental Research Funds for the Central Universities (GK201903055)
文摘Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction.
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43000000)the CAS-JSPS Cooperative Research Project(No.GJHZ2021131)。
文摘Twist-angle two-dimensional systems,such as twisted bilayer graphene,twisted bilayer transition metal dichalcogenides,twisted bilayer phosphorene and their multilayer van der Waals heterostructures,exhibit novel and tunable properties due to the formation of Moirésuperlattice and modulated Moirébands.The review presents a brief venation on the development of"twistronics"and subsequent applications based on band engineering by twisting.Theoretical predictions followed by experimental realization of magic-angle bilayer graphene ignited the flame of investigation on the new freedom degree,twistangle,to adjust(opto)electrical behaviors.Then,the merging of Dirac cones and the presence of flat bands gave rise to enhanced light-matter interaction and gate-dependent electrical phases,respectively,leading to applications in photodetectors and superconductor electronic devices.At the same time,the increasing amount of theoretical simulation on extended twisted 2D materials like TMDs and BPs called for further experimental verification.Finally,recently discovered properties in twisted bilayer h-BN evidenced h-BN could be an ideal candidate for dielectric and ferroelectric devices.Hence,both the predictions and confirmed properties imply twist-angle two-dimensional superlattice is a group of promising candidates for next-generation(opto)electronics.
基金supported by the National Natural Science Foundation of China (Grant No. 62004080)the Postdoctoral Innovative Talents Supporting Program (Grant No. BX20190143)the China Postdoctoral Science Foundation (Grant No. 2020M670834)。
文摘Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson(DJ) perovskites. In this work, a serious of cycloalkane(CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional(DFT) calculations.We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV.These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.
基金Supported by the National Natural Science Foundation of China under Grant No 51672208the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period under Grant No 2012BAD47B02+2 种基金the Sci-Tech Research and Development Program of Shaanxi Province under Grant Nos 2010K01-120,2011JM6010 and 2015JM5183the Shaanxi Provincial Department of Education under Grant No 2013JK0927the SRF for ROCS of SEM
文摘Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe are good 2D piezoelectric materials with large piezoelectric coefficients. The values of d11d11 of SnSi and SnGe are 5.04pm/V and 5.42pm/V, respectively, which are much larger than 2D MoS2 (3.6pm/V) and are comparable with some frequently used bulk materials (e.g., wurtzite AlN 5.1pm/V). Charge transfer is calculated by the L wdin analysis and we find that the piezoelectric coefficients (d11d11 and d31) are highly dependent on the polarizabilities of the anions and cations in group-IV monolayers.
基金Project supported by the National Natural Science Foundation of China(Grant No.11747054)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.2018M631760)+1 种基金the Project of Hebei Educational Department,China(Grant Nos.ZD2018015 and QN2018012)the Advanced Postdoctoral Programs of Hebei Province,China(Grant No.B2017003004)
文摘Tin monoxide(SnO) is an interesting two-dimensional material because it is a rare oxide semiconductor with bipolar conductivity.However, the lower room temperature mobility limits the applications of SnO in the future.Thus, we systematically investigate the effects of different layer structures and strains on the electron–phonon coupling and phonon-limited mobility of SnO.The A2uphonon mode in the high-frequency region is the main contributor to the coupling with electrons for different layer structures.Moreover, the orbital hybridization of Sn atoms existing only in the bilayer structure changes the conduction band edge and conspicuously decreases the electron–phonon coupling, and thus the electronic transport performance of the bilayer is superior to that of other layers.In addition, the compressive strain of ε=-1.0% in the monolayer structure results in a conduction band minimum(CBM) consisting of two valleys at the Γ point and along the M–Γ line, and also leads to the intervalley electronic scattering assisted by the Eg(-1)mode.However, the electron–phonon coupling regionally transferring from high frequency A2uto low frequency Eg(-1)results in little change of mobility.
基金Project supported by the National Natural Science Foundation of China(Grant No.51702146)the College Students’Innovation and Entrepreneurship Projects,China(Grant No.201710148000072)Liaoning Province Doctor Startup Fund,China(Grant No.201601325)。
文摘Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074053,61901161,21906041,and 11774079)the Natural Science Foundation of Henan Province,China(Grant Nos.202300410226,202300410237,and 202300410100)+1 种基金Henan Overseas Expertise Introduction Center for Discipline Innovation(Grant No.CXJD2019005)key scientific research projects of Colleges and universities in Henan Province,China(Grant Nos.21A480004,152102210306,192102310499,and 19B450001).
文摘The ferromagnetism of two-dimensional(2D)materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic framework materials(TM-NH MOF,TM=Sc-Zn)are designed,and their electronic and magnetic characters are systematically studied by means of first-principles calculations.Their structural stabilities are examined through binding energies and ab-initio molecular dynamics simulations.Their optimized lattice constants are correlated to the central TM atoms.These 2D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers.Interestingly,Ni-and Zn-NH MOFs are nonmagnetic semiconductors(SM)with band gaps of 0.41 eV and 0.61 eV,respectively.Co-and Cu-NH MOFs are bipolar magnetic semiconductors(BMS),while Fe-NH MOF monolayer is a half-semiconductor(HSM).Furthermore,the elastic strain could tune their magnetic behaviors and transformation,which ascribes to the charge redistribution of TM-3d states.This work predicts several new 2D magnetic MOF materials,which are promising for applications in spintronics and nanoelectronics.
基金the National Natural Science Foundation of China(No.91753118 and No.21773012)the Fundamental Research Funds for Central Universities。
文摘Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.
基金supported by the National Natural Science Foundation of China(No.20573022,No.20425415)the National Basic Research Pro-gram of China(2005CB623800),the PHD Program of M0E(20050246010)the"Qimingxing"Project(No.04QM1402)of Shanghai Municipal Science and Technology Commission,and the"Shuguang"Project(No.01SG05)of the Shanghai Municipal Education Commission and Shanghai Education Development Foundation.
文摘To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) (PMDA-ODA)/silica nanocomposite was investigated by two-dimensional ATR-FTIR spectroscopy, by which three states of water molecules owning different H-bonding strength were distinguished. The amounts and strength of H-bonding also played a significant role in determining the diffusion rate of the different states of water molecules. The type of aggregated water molecules which also formed H-bonding with silicic acid (residues) or polyimide system was the last one diffusing to the polymer side in contact with the ATR crystal element because the polymeric matrix blocked their diffusion to a great extent. The diffusion coefficient was also estimated to gain the information of the dynamic diffusion behavior.
文摘Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.
基金This work was supported by the National Natural Science Foundation of China (No.21033008 and No.21073169)the National Basic Research Program of China (No.2010CB923300 and No.2011CB921400)and the Hong Kong RGC (No.604709) and UGC (AoE/P04/08-2) is gratefully acknowledged.
文摘To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.