提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA...提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。展开更多
多生物特征的融合与识别可提高身份识别系统的整体性能.本文在研究特征层融合的基础上,结合二维Fisher线性判别分析(2-Dimensional Fisher Linear Discriminant Analysis,2DFLD),提出了一种人脸与虹膜特征融合与识别模型.首先,对人脸图...多生物特征的融合与识别可提高身份识别系统的整体性能.本文在研究特征层融合的基础上,结合二维Fisher线性判别分析(2-Dimensional Fisher Linear Discriminant Analysis,2DFLD),提出了一种人脸与虹膜特征融合与识别模型.首先,对人脸图像与虹膜图像分别进行压缩降维处理,得到相应的初始特征矩阵.然后将人脸与虹膜的初始特征矩阵进行组合,获得组合特征矩阵.同时,利用2DFLD算法对组合特征矩阵进行融合,获得了人脸与虹膜的融合特征.最后运用最小距离分类器进行识别.基于ORL(Olivetti Research Laboratory)人脸数据库和CASIA(Chinese Academy ofSciences,Institute of Automation)虹膜数据库的实验结果表明,该模型实现了特征层融合,不仅克服了"小样本"效应,而且有效提高了身份识别的正确识别率,为多生物特征身份识别提供了一种有效模型.展开更多
文摘提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。
文摘多生物特征的融合与识别可提高身份识别系统的整体性能.本文在研究特征层融合的基础上,结合二维Fisher线性判别分析(2-Dimensional Fisher Linear Discriminant Analysis,2DFLD),提出了一种人脸与虹膜特征融合与识别模型.首先,对人脸图像与虹膜图像分别进行压缩降维处理,得到相应的初始特征矩阵.然后将人脸与虹膜的初始特征矩阵进行组合,获得组合特征矩阵.同时,利用2DFLD算法对组合特征矩阵进行融合,获得了人脸与虹膜的融合特征.最后运用最小距离分类器进行识别.基于ORL(Olivetti Research Laboratory)人脸数据库和CASIA(Chinese Academy ofSciences,Institute of Automation)虹膜数据库的实验结果表明,该模型实现了特征层融合,不仅克服了"小样本"效应,而且有效提高了身份识别的正确识别率,为多生物特征身份识别提供了一种有效模型.