To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this...To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.展开更多
A new gray-spatial histogram is proposed, which incorporates spatial informatio n with gray compositions without sacrificing the robustness of traditional gray histograms. The purpose is to consider the representation...A new gray-spatial histogram is proposed, which incorporates spatial informatio n with gray compositions without sacrificing the robustness of traditional gray histograms. The purpose is to consider the representation role of gray compositi ons and spatial information simultaneously. Each entry in the gray-spatial hist ogram is the gray frequency and corresponding position information of images. In the experiments of sonar image recognition, the results show that the gray-spa tial histogram is effective in practical use.展开更多
A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. ...A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance.展开更多
A new improved algorithm of histogram equalization was discussed and actualized by analyzing the traditional algorithm. This improved algorithm has better effect than the traditional one, especially it is used to proc...A new improved algorithm of histogram equalization was discussed and actualized by analyzing the traditional algorithm. This improved algorithm has better effect than the traditional one, especially it is used to process poor quality images.展开更多
Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class unifo...Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.展开更多
The classification of spatial characteristics and discharge modes of dielectric barrier discharge(DBD)are gaining increasing attention in industrial applications,especially in the field of surface treatment of materia...The classification of spatial characteristics and discharge modes of dielectric barrier discharge(DBD)are gaining increasing attention in industrial applications,especially in the field of surface treatment of materials.In this work,gray level histogram(GLH)and Fourier energy spectrum based on the digital image processing tech no logy are applied to investigate the spatial structure and discharge mode of mesh-plate DBD.The coefficient of variation(CV)is calculated to describe the uniformity of the discharge.The results show that the discharge mode of mesh-plate DBD changes from periodic discharge to filamentary discharge when the applied voltage increases from 11-15 kV.Moreover,a more regular spatial structure is obtained under lower applied voltages during the discharge process.It is also found that the apertures of mesh electrodes which are below 1 mm have smaller values of CV compared to plate electrodes,indicating more uniform discharge.Finally,polypropylene is treated by mesh-plate DBD for surface modification.The hydrophilicity is significantly improved as the water contact angle decreased by 64°,and the dyeing depth is also enhanced.展开更多
Reversible data hiding(RDH)is a method to embed messages into an image that human eyes are difficult to recognize the differences between the original image and the embedded image.The method needs to make sure that th...Reversible data hiding(RDH)is a method to embed messages into an image that human eyes are difficult to recognize the differences between the original image and the embedded image.The method needs to make sure that the original image and the embedded information can be exactly recovered.The prediction-error expansion(PEE)is a successful way to realize RDH.However,it is fixed when pairing the conventional twodimensional prediction-error histogram(2D-PEH).So,the embedding capacity(EC)and embedding distortion(ED)are not satisfactory.In this study,we propose a method called greedy pairing prediction-error expansion(GPPEE)based on pairwise RDH and demonstrate GPPEE can achieve a more efficient embedding goal and reduce ED.展开更多
Tropical hurricanes are among the most devastating hazards on Earth.Knowledge about its intense inner-core structure and dynamics will improve hurricane forecasts and advisories.The precise morphological parameters ex...Tropical hurricanes are among the most devastating hazards on Earth.Knowledge about its intense inner-core structure and dynamics will improve hurricane forecasts and advisories.The precise morphological parameters extracted from high-resolution spaceborne Synthetic Aperture Radar(SAR)images,can play an essential role in further exploring and monitoring hurricane dynamics,especially when hurricanes undergo amplification,shearing,eyewall replacements and so forth.Moreover,these parameters can help to build guidelines for wind calibration of the more abundant,but lower resolution scatterometer wind data,thus better linking scatterometer wind fields to hurricane categories.In this paper,we develop a new method for automatically extracting the hurricane eyes from C-band SAR data by constructing Gray Level-Gradient Co-occurrence Matrices(GLGCMs).The hurricane eyewall is determined with a two-dimensional vector,generated by maximizing the class entropy of the hurricane eye region in GLGCM.The results indicate that when the hurricane is weak,or the eyewall is not closed,the hurricane eye extracted with this automatic method still agrees with what is observed visually,and it preserves the texture characteristics of the original image.As compared to Du’s wavelet analysis method and other morphological analysis methods,the approach developed here has reduced artefacts due to factors like hurricane size and has lower programming complexity.In summary,the proposed method provides a new and elegant choice for hurricane eye morphology extraction.展开更多
基金Project(06JJ50110) supported by the Natural Science Foundation of Hunan Province, China
文摘To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.
文摘A new gray-spatial histogram is proposed, which incorporates spatial informatio n with gray compositions without sacrificing the robustness of traditional gray histograms. The purpose is to consider the representation role of gray compositi ons and spatial information simultaneously. Each entry in the gray-spatial hist ogram is the gray frequency and corresponding position information of images. In the experiments of sonar image recognition, the results show that the gray-spa tial histogram is effective in practical use.
基金Project(60873010) supported by the National Natural Science Foundation of ChinaProjects(N090504005, N090604012, N090104001) supported by the Fundamental Research Funds for the Central UniversitiesProject(NCET-05-0288) supported by Program for New Century Excellent Talents in University
文摘A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance.
文摘A new improved algorithm of histogram equalization was discussed and actualized by analyzing the traditional algorithm. This improved algorithm has better effect than the traditional one, especially it is used to process poor quality images.
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Priority Academic Program Development of Jiangsu Higher Education Institution+2 种基金the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)the State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Open Project Program of State Key Laboratory of Food Science and Technology,Jiangnan University(SKLF-KF-201310)
文摘Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.
基金financial support from the Joint Funds of National Natural Science Foundation of China(No.U1462105)
文摘The classification of spatial characteristics and discharge modes of dielectric barrier discharge(DBD)are gaining increasing attention in industrial applications,especially in the field of surface treatment of materials.In this work,gray level histogram(GLH)and Fourier energy spectrum based on the digital image processing tech no logy are applied to investigate the spatial structure and discharge mode of mesh-plate DBD.The coefficient of variation(CV)is calculated to describe the uniformity of the discharge.The results show that the discharge mode of mesh-plate DBD changes from periodic discharge to filamentary discharge when the applied voltage increases from 11-15 kV.Moreover,a more regular spatial structure is obtained under lower applied voltages during the discharge process.It is also found that the apertures of mesh electrodes which are below 1 mm have smaller values of CV compared to plate electrodes,indicating more uniform discharge.Finally,polypropylene is treated by mesh-plate DBD for surface modification.The hydrophilicity is significantly improved as the water contact angle decreased by 64°,and the dyeing depth is also enhanced.
基金supported by MOST under Grants No.107-2221-E-845-002-MY3 and No.110-2221-E-845-002-。
文摘Reversible data hiding(RDH)is a method to embed messages into an image that human eyes are difficult to recognize the differences between the original image and the embedded image.The method needs to make sure that the original image and the embedded information can be exactly recovered.The prediction-error expansion(PEE)is a successful way to realize RDH.However,it is fixed when pairing the conventional twodimensional prediction-error histogram(2D-PEH).So,the embedding capacity(EC)and embedding distortion(ED)are not satisfactory.In this study,we propose a method called greedy pairing prediction-error expansion(GPPEE)based on pairwise RDH and demonstrate GPPEE can achieve a more efficient embedding goal and reduce ED.
基金supported by the National Key Research and Development Program of China(No.2018YFC1406206)supported by the National Natural Science Foundation of China(Grant No.61802424).Ad Stoffelen is supported by the EUMETSAT OSI SAF.
文摘Tropical hurricanes are among the most devastating hazards on Earth.Knowledge about its intense inner-core structure and dynamics will improve hurricane forecasts and advisories.The precise morphological parameters extracted from high-resolution spaceborne Synthetic Aperture Radar(SAR)images,can play an essential role in further exploring and monitoring hurricane dynamics,especially when hurricanes undergo amplification,shearing,eyewall replacements and so forth.Moreover,these parameters can help to build guidelines for wind calibration of the more abundant,but lower resolution scatterometer wind data,thus better linking scatterometer wind fields to hurricane categories.In this paper,we develop a new method for automatically extracting the hurricane eyes from C-band SAR data by constructing Gray Level-Gradient Co-occurrence Matrices(GLGCMs).The hurricane eyewall is determined with a two-dimensional vector,generated by maximizing the class entropy of the hurricane eye region in GLGCM.The results indicate that when the hurricane is weak,or the eyewall is not closed,the hurricane eye extracted with this automatic method still agrees with what is observed visually,and it preserves the texture characteristics of the original image.As compared to Du’s wavelet analysis method and other morphological analysis methods,the approach developed here has reduced artefacts due to factors like hurricane size and has lower programming complexity.In summary,the proposed method provides a new and elegant choice for hurricane eye morphology extraction.