期刊文献+
共找到3,275篇文章
< 1 2 164 >
每页显示 20 50 100
Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
1
作者 朱健保 秦维 朱文光 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期485-491,共7页
Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semicon... Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semiconducting In_(2)Se_(2) or a 2D ferroelectricα-In_(2)Se_(3) layer.Such SO splitting has a Rashba-like but distinct spin texture in the valence band around the maximum,where the chirality of the spin texture reverses within the upper spin-split branch,in contrast to the conventional Rashba systems where the upper branch and lower branch have opposite chirality solely in the region below the band crossing point.The ferroelectric nature ofα-In_(2)Se_(3) further enables the tuning of the spin texture upon the reversal of the electric polarization with the application of an external electric field.Detailed analysis based on a tight-binding model reveals that such SO splitting texture results from the interplay of complex orbital characters and substrate interaction.This finding enriches the diversity of SO splitting systems and is also expected to promise for spintronic applications. 展开更多
关键词 spin-orbit splitting two-dimensional heterostructure first-principles calculation
下载PDF
Construction of MnS/MoS_(2) heterostructure on two-dimensional MoS_(2) surface to regulate the reaction pathways for high-performance Li-O_(2) batteries
2
作者 Guoliang Zhang Han Yu +6 位作者 Xia Li Xiuqi Zhang Chuanxin Hou Shuhui Sun Yong Du Zhanhu Guo Feng Dang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期443-452,I0012,共11页
The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuni... The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuning the adsorption strength in 2D materials to the reaction intermediates is essential for achieving high-performance LOBs.Herein,a MnS/MoS_(2) heterostructure is designed as a cathode catalyst by adjusting the adsorption behavior at the surface.Different from the toroidal-like discharge products on the MoS_(2) cathode,the MnS/MoS_(2) surface displays an improved adsorption energy to reaction species,thereby promoting the growth of the film-like discharge products.MnS can disturb the layer growth of MoS_(2),in which the stack edge plane features a strong interaction with the intermediates and limits the growth of the discharge products.Experimental and theoretical results confirm that the MnS/MoS_(2) heterostructure possesses improved electron transfer kinetics at the interface and plays an important role in the adsorption process for reaction species,which finally affects the morphology of Li_2O_(2),In consequence,the MnS/MoS_(2) heterostructure exhibits a high specific capacity of 11696.0 mA h g^(-1) and good cycle stability over 1800 h with a fixed specific capacity of 600 mA h g^(-1) at current density of100 mA g^(-1) This work provides a novel interfacial engineering strategy to enhance the performance of LOBs by tuning the adsorption properties of 2D materials. 展开更多
关键词 Li-O_(2)batteries two-dimensional materials MnS/MoS_(2)heterostructure Edge plane Adsorption behavior
下载PDF
Two/Quasi-two-dimensional perovskite-based heterostructures:construction,properties and applications 被引量:1
3
作者 Haizhen Wang Yingying Chen Dehui Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期100-123,共24页
Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exc... Two-dimensional(2D)/quasi-2D organic-inorganic halide perovskites are regarded as naturally formed multiple quantum wells with inorganic layers isolated by long organic chains,which exhibit layered structure,large exciton binding energy,strong nonlinear optical effect,tunable bandgap via changing the layer number or chemical composition,improved environmental stability,and excellent optoelectronic properties.The extensive choice of long organic chains endows 2D/quasi-2D perovskites with tunable electron-phonon coupling strength,chirality,or ferroelectricity properties.In particular,the layered nature of 2D/quasi-2D perovskites allows us to exfoliate them to thin plates to integrate with other materials to form heterostructures,the fundamental structural units for optoelectronic devices,which would greatly extend the functionalities in view of the diversity of 2D/quasi-2D perovskites.In this paper,the recent achievements of 2D/quasi-2D perovskite-based heterostructures are reviewed.First,the structure and physical properties of 2D/quasi-2D perovskites are introduced.We then discuss the construction and characterizations of 2D/quasi-2D perovskite-based heterostructures and highlight the prominent optical properties of the constructed heterostructures.Further,the potential applications of 2D/quasi-2D perovskite-based heterostructures in photovoltaic devices,light emitting devices,photodetectors/phototransistors,and valleytronic devices are demonstrated.Finally,we summarize the current challenges and propose further research directions in the field of 2D/quasi-2D perovskite-based heterostructures. 展开更多
关键词 2D perovskites heterostructures characterization optical properties applications
下载PDF
Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures 被引量:2
4
作者 Zhaobo Zhou Shijun Yuan Jinlan Wang 《Frontiers of physics》 CSCD 2021年第4期125-133,共9页
Two-dimensional(2D)materials,due to its excellent mechanical,unique electrical and optical properties,have become hot materials in the field of photocatalysis.Especially,2D heterostructures can well inhibit the recomb... Two-dimensional(2D)materials,due to its excellent mechanical,unique electrical and optical properties,have become hot materials in the field of photocatalysis.Especially,2D heterostructures can well inhibit the recombination of photogenerated electrons and holes in photocatalysis because of its special energy band structures and carrier transport characteristics,which are conducive to enhancing photoenergy conversion capacity and improving oxidation and reduction ability,so as to purify pollutants and store energy.In this minireview,we summarize recent theoretical progress in direct Z-scheme photocatalysis of 2D heterostructures,focusing on physical mechanism and improving catalytic efficiency.Current challenges and prospects for 2D direct Z-scheme photocatalysts are discussed as well. 展开更多
关键词 two-dimensional heterostructures direct Z-scheme PHOTOCATALYST density functional theory
原文传递
Recent advances in two-dimensional photovoltaic devices
5
作者 Haoyun Wang Xingyu Song +6 位作者 Zexin Li Dongyan Li Xiang Xu Yunxin Chen Pengbin Liu Xing Zhou Tianyou Zhai 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期26-40,共15页
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe... Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices. 展开更多
关键词 two-dimensional materials photovoltaic devices PHOTODETECTORS solar cells heterostructures
下载PDF
Visible-to-near-infrared photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures with a fast response speed and high normalized detectivity
6
作者 Xinfa Zhu Weishuai Duan +6 位作者 Xiancheng Meng Xiyu Jia Yonghui Zhang Pengyu Zhou Mengjun Wang Hongxing Zheng Chao Fan 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期76-83,共8页
The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(... The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(2)-based photodetection faces obstacles,including slow response speed and low normalized detectivity.In this work,photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures have been implemented through a polydimethylsiloxane(PDMS)−assisted transfer method.These photodetectors demonstrate broad-spectrum photoresponse within the 405 to 850 nm wavelength range.The photodetector based on the SnS/SnSe_(2)heterostructure exhibits a significant responsivity of 4.99×10^(3)A∙W^(−1),normalized detectivity of 5.80×10^(12)cm∙Hz^(1/2)∙W^(−1),and fast response time of 3.13 ms,respectively,owing to the built-in electric field.Meanwhile,the highest values of responsivity,normalized detectivity,and response time for the photodetector based on the SnSe/SnSe_(2)heterostructure are 5.91×10^(3)A∙W^(−1),7.03×10^(12)cm∙Hz^(1/2)∙W−1,and 4.74 ms,respectively.And their photodetection performances transcend those of photodetectors based on individual SnSe_(2),SnS,SnSe,and other commonly used 2D materials.Our work has demonstrated an effective strategy to improve the performance of SnSe_(2)-based photodetectors and paves the way for their future commercialization. 展开更多
关键词 two-dimensional materials tin diselenide heterostructures broad-spectrum photodetectors
下载PDF
Twisted Integration of Complex Oxide Magnetoelectric Heterostructures via Water‑Etching and Transfer Process
7
作者 Guannan Yang Guohua Dong +4 位作者 Butong Zhang Xu Xu Yanan Zhao Zhongqiang Hu Ming Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期360-369,共10页
Manipulating strain mode and degree that can be applied to epitaxial complex oxide thin films have been a cornerstone of strain engineering.In recent years,lift-off and transfer technology of the epitaxial oxide thin ... Manipulating strain mode and degree that can be applied to epitaxial complex oxide thin films have been a cornerstone of strain engineering.In recent years,lift-off and transfer technology of the epitaxial oxide thin films have been developed that enabled the integration of heterostructures without the limitation of material types and crystal orientations.Moreover,twisted integration would provide a more interesting strategy in artificial magnetoelectric heterostructures.A specific twist angle between the ferroelectric and ferromagnetic oxide layers corresponds to the distinct strain regulation modes in the magnetoelectric coupling process,which could provide some insight in to the physical phenomena.In this work,the La_(0.67)Sr_(0.33)MnO_(3)(001)/0.7Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.3PbTiO_(3)(011)(LSMO/PMN-PT)heterostructures with 45.and 0.twist angles were assembled via water-etching and transfer process.The transferred LSMO films exhibit a fourfold magnetic anisotropy with easy axis along LSMO<110>.A coexistence of uniaxial and fourfold magnetic anisotropy with LSMO[110]easy axis is observed for the 45°Sample by applying a 7.2 kV cm^(−1)electrical field,significantly different from a uniaxial anisotropy with LSMO[100]easy axis for the 0°Sample.The fitting of the ferromagnetic resonance field reveals that the strain coupling generated by the 45°twist angle causes different lattice distortion of LSMO,thereby enhancing both the fourfold and uniaxial anisotropy.This work confirms the twisting degrees of freedom for magnetoelectric coupling and opens opportunities for fabricating artificial magnetoelectric heterostructures. 展开更多
关键词 Magnetoelectric heterostructures Twist angle Epitaxial lift-off Magnetic anisotropy Ferromagnetic resonance
下载PDF
Progress on two-dimensional ferrovalley materials
8
作者 李平 刘邦 +2 位作者 陈帅 张蔚曦 郭志新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期32-43,共12页
The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted t... The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics. 展开更多
关键词 ferrovalley valley polarization two-dimensional materials multi-field tunable
下载PDF
Unlocking the potential of ultra-thin two-dimensional antimony materials:Selective growth and carbon coating for efficient potassium-ion storage
9
作者 Dongyu Zhang Zhaomin Wang +4 位作者 Yabin Shen Yeguo Zou Chunli Wang Limin Wang Yong Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期440-449,共10页
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b... Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries. 展开更多
关键词 ANTIMONY two-dimensional materials Selective growth Nitrogen-doped carbon Potassium-ion batteries
下载PDF
Anomalous valley Hall effect in two-dimensional valleytronic materials
10
作者 陈洪欣 原晓波 任俊峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期2-14,共13页
The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectron... The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them. 展开更多
关键词 anomalous valley Hall effect valley polarization valleytronics two-dimensional materials
下载PDF
Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
11
作者 王斐 张亚玲 +2 位作者 杨文佳 张会生 许小红 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期16-31,共16页
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ... Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field. 展开更多
关键词 valley polarization valley-polarized topological states two-dimensional material
下载PDF
Global dust density in two-dimensional complex plasma
12
作者 赵逸真 刘松芬 +1 位作者 孔伟 杨芳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期445-450,共6页
The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyz... The driven-dissipative Langevin dynamics simulation is used to produce a two-dimensional(2D) dense cloud, which is composed of charged dust particles trapped in a quadratic potential. A 2D mesh grid is built to analyze the center-to-wall dust density. It is found that the local dust density in the outer region relative to that of the inner region is more nonuniform,being consistent with the feature of quadratic potential. The dependences of the global dust density on equilibrium temperature, particle size, confinement strength, and confinement shape are investigated. It is found that the particle size, the confinement strength, and the confinement shape strongly affect the global dust density, while the equilibrium temperature plays a minor effect on it. In the direction where there is a stronger confinement, the dust density gradient is bigger. 展开更多
关键词 dust particles quadratic potential two-dimensional mesh grid
下载PDF
Emerging two-dimensional Mo-based materials for rechargeable metal-ion batteries:Advances and perspectives
13
作者 Qingqing Ruan Yuehua Qian +2 位作者 Mengda Xue Lingyun Chen Qichun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期487-518,I0012,共33页
With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years... With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years,two-dimensional(2D)molybdenum-based(Mo-based)materials have drawn considerable attention due to their exceptional characteristics,including low cost,unique crystal structure,high theoretical capacity and controllable chemical compositions.However,like other transition metal compounds,Mo-based materials are facing thorny challenges to overcome,such as slow electron/ion transfer kinetics and substantial volume changes during the charge and discharge processes.In this review,we summarize the recent progress in developing emerging 2D Mo-based electrode materials for MIBs,encompassing oxides,sulfides,selenides,carbides.After introducing the crystal structure and common synthesis methods,this review sheds light on the charge storage mechanism of several 2D Mo-based materials by various advanced characterization techniques.The latest achievements in utilizing 2D Mo-based materials as electrode materials for various MIBs(including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs)and zinc-ion batteries(ZIBs))are discussed in detail.Afterwards,the modulation strategies for enhancing the electrochemical performance of 2D Mo-based materials are highlighted,focusing on heteroatom doping,vacancies creation,composite coupling engineering and nanostructure design.Finally,we present the existing challenges and future research directions for 2D Mo-based materials to realize high-performance energy storage systems. 展开更多
关键词 Molybdenum-based materials two-dimensional materials Lithium-ion batteries Sodium-ion batteries Zinc-ion batteries
下载PDF
Boosting MA-based two-dimensional Ruddlesden-Popper perovskite solar cells by incorporating a binary spacer
14
作者 Xue Dong Yinhao Tang +10 位作者 Yiqun Li Xin Li Yuzhen Zhao Wenqi Song Fangmin Wang Shudong Xu Yipeng Zhou Chenxin Ran Zongcheng Miao Lin Song Zhongbin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期348-356,I0008,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of ... Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts. 展开更多
关键词 Perovskite solar cells two-dimensional Ruddlesden-Popper perovskite Binary spacers Stability
下载PDF
Low-frequency hybridized excess vibrations of two-dimensional glasses
15
作者 付立存 郑一鸣 王利近 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期550-555,共6页
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i... One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties. 展开更多
关键词 density of states vibrational modes sound attenuation two-dimensional glasses
下载PDF
Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
16
作者 程晓昱 解晨雪 +6 位作者 刘宇伦 白瑞雪 肖南海 任琰博 张喜林 马惠 蒋崇云 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期112-117,共6页
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b... Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices. 展开更多
关键词 two-dimensional materials deep learning data augmentation generating adversarial networks
下载PDF
Phonon resonance modulation in weak van der Waals heterostructures:Controlling thermal transport in graphene-silicon nanoparticle systems
17
作者 李毅 刘一浓 胡世谦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期96-102,共7页
The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles inf... The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications. 展开更多
关键词 thermal conductivity molecular dynamics phonon resonance van der Waals interaction graphene-silicon nanoparticle heterostructure
下载PDF
Single-cell manipulation by two-dimensional micropatterning
18
作者 Xuehe Ma Haimei Zhang +7 位作者 Shiyu Deng Qiushuo Sun Qingsong Hu Yuhang Pan Fen Hu Imshik Lee Fulin Xing Leiting Pan 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期45-59,共15页
Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-di... Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-dimensional micropatterning techniques offer powerful tools to construct controllable and well-organized microenvironment for single-cell level investigations with qualitative analysis,cellular standardization,and in vivo environment mimicking.Here,we provide an overview of the basic principle and characteristics of the two most widely-used micropatterning techniques,including photolithographic micropatterning and soft lithography micropatterning.Moreover,we summarize the application of micropatterning technique in controlling cytoskeleton,cell migration,nucleus and gene expression,as well as intercellular communication. 展开更多
关键词 two-dimensional micropatterning CYTOSKELETON cell migration extracellular matrix intercellular communication gene expression
下载PDF
Magnetic proximity effect in the two-dimensional ε-Fe_(2)O_(3)/NbSe_(2)heterojunction
19
作者 车冰玉 胡国静 +17 位作者 朱超 郭辉 吕森浩 刘轩冶 吴康 赵振 潘禄禄 祝轲 齐琦 韩烨超 林晓 李子安 申承民 鲍丽宏 刘政 周家东 杨海涛 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期492-497,共6页
Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie te... Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie temperature and instability in air,it is hard to realize practical applications for the reported layered magnetic materials at present.In this paper,we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe_(2)O_(3) nanosheets with Curie temperature above 350 K.The ε-Fe_(2)O_(3)/NbSe_(2) heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe_(2) multilayer.The electrical transport results show that the subtle proximity effect can modulate the interfacial spin–orbit interaction while undegrading the superconducting critical parameters.Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals(vdW)materials for exploring new physical phenomena. 展开更多
关键词 two-dimensional heterojunctions magnetic proximity effect non-layered magnetic nanosheet spin-orbit interaction
下载PDF
Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers
20
作者 李慧平 潘帅唯 +2 位作者 王喆 向斌 朱文光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期708-714,共7页
A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont... A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications. 展开更多
关键词 exchange bias two-dimensional ferromagnetic/antiferromagnetic bilayers asymmetric magnetic interaction
下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部