期刊文献+
共找到627篇文章
< 1 2 32 >
每页显示 20 50 100
Two-Dimensional Perovskite Single Crystals for High-Performance X-ray Imaging and Exploring MeV X-ray Detection
1
作者 Xieming Xu Yiheng Wu +5 位作者 Yi Zhang Xiaohui Li Fang Wang Xiaoming Jiang Shaofan Wu Shuaihua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期139-146,共8页
Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,bu... Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications. 展开更多
关键词 MeV X-ray detection single-crystal X-ray detectors two-dimensional perovskites X-ray imaging
下载PDF
RepDNet:A re-parameterization despeckling network for autonomous underwater side-scan sonar imaging with prior-knowledge customized convolution
2
作者 Zhuoyi Li Zhisen Wang +2 位作者 Deshan Chen Tsz Leung Yip Angelo P.Teixeira 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期259-274,共16页
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo... Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency. 展开更多
关键词 Side-scan sonar sonar image despeckling Domain knowledge RE-PARAMETERIZATION
下载PDF
A semantic segmentation-based underwater acoustic image transmission framework for cooperative SLAM
3
作者 Jiaxu Li Guangyao Han +1 位作者 Shuai Chang Xiaomei Fu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期339-351,共13页
With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection abil... With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission. 展开更多
关键词 Semantic segmentation sonar image transmission Learning-based compression
下载PDF
A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
4
作者 苏静明 方士辉 +1 位作者 洪炎 温言 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期233-243,共11页
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con... A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc. 展开更多
关键词 color image encryption discrete cosine transform two-dimensional(2D)coupled chaotic system diagonal scrambling
下载PDF
Fast Segmentation Method of Sonar Images for Jacket Installation Environment
5
作者 Hande Mao Hongzhe Yan +4 位作者 Lei Lin Wentao Dong Yuhang Li Yuliang Liu Jing Xue 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1671-1686,共16页
It has remained a hard nut for years to segment sonar images of jacket installation environment,most of which are noisy images with inevitable blur after noise reduction.For the purpose of solutions to this problem,a ... It has remained a hard nut for years to segment sonar images of jacket installation environment,most of which are noisy images with inevitable blur after noise reduction.For the purpose of solutions to this problem,a fast segmen-tation algorithm is proposed on the basis of the gray value characteristics of sonar images.This algorithm is endowed with the advantage in no need of segmentation thresholds.To realize this goal,we follow the undermentioned steps:first,calcu-late the gray matrix of the fuzzy image background.After adjusting the gray value,the image is divided into three regions:background region,buffer region and target regions.Afterfiltering,we reset the pixels with gray value lower than 255 to binarize images and eliminate most artifacts.Finally,the remaining noise is removed by morphological processing.The simulation results of several sonar images show that the algorithm can segment the fuzzy sonar images quickly and effectively.Thus,the stable and feasible method is testified. 展开更多
关键词 image segmentation sonar image ocean engineering morphological image
下载PDF
Improving Yolo5 for Real-Time Detection of Small Targets in Side Scan Sonar Images
6
作者 WANG Jianjun WANG Qi +2 位作者 GAO Guocheng QIN Ping HE Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1551-1562,共12页
Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the t... Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the target for observers.The target feature information of an SSS image is similar to the background information,and a small target has less pixel information;therefore,accu-rately identifying and locating small targets in SSS images is challenging.We collect the SSS images of iron metal balls(with a diameter of 1m)and rocks to solve the problem of target misclassification.Thus,the dataset contains two types of targets,namely,‘ball’and‘rock’.With the aim to enable AUVs to accurately and automatically identify small underwater targets in SSS images,this study designs a multisize parallel convolution module embedded in state-of-the-art Yolo5.An attention mechanism transformer and a convolutional block attention module are also introduced to compare their contributions to small target detection accuracy.The performance of the proposed method is further evaluated by taking the lightweight networks Mobilenet3 and Shufflenet2 as the backbone network of Yolo5.This study focuses on the performance of convolutional neural networks for the detection of small targets in SSS images,while another comparison experiment is carried out using traditional HOG+SVM to highlight the neural network’s ability.This study aims to improve the detection accuracy while ensuring the model efficiency to meet the real-time working requirements of AUV target detection. 展开更多
关键词 side scan sonar images autonomous underwater vehicle multisize parallel convolution module attention mechanism
下载PDF
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
7
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy C-means clustering particle swarm optimization two-dimensional histogram
下载PDF
Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm 被引量:2
8
作者 LI Wei HU Xiao-hui WANG Hong-chuang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期42-49,共8页
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe... In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm. 展开更多
关键词 two-dimensional cross entropy biogeography-based optimization(BBO)algorithm multi-threshold image segmentation
下载PDF
Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes–Vanstone elliptic curve cryptosystem 被引量:1
9
作者 Zeyu Liu Tiecheng Xia Jinbo Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期161-176,共16页
We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bif... We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms. 展开更多
关键词 CHAOS fractional two-dimensional triangle function combination discrete chaotic map image encryption Menezes-Vanstone elliptic curve cryptosystem
下载PDF
Image Thresholding Using Two-Dimensional Tsallis Cross Entropy Based on Either Chaotic Particle Swarm Optimization or Decomposition
10
作者 吴一全 张晓杰 吴诗婳 《China Communications》 SCIE CSCD 2011年第7期111-121,共11页
The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e... The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly. 展开更多
关键词 signal and information processing image segmentation threshold selection two-dimensional Tsallis cross entropy chaotic particle swarm optimization DECOMPOSITION
下载PDF
An Analysis of Two-Dimensional Image Data Using a Grouping Estimator
11
作者 Kazumitsu Nawata 《Open Journal of Statistics》 2022年第1期33-48,共16页
Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regio... Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regions is basic but important. If the model contains stochastic factors such as random observation errors, determining the boundary is not easy. When the probability distributions are mis-specified, ordinal methods such as probit and logit maximum likelihood estimators (MLE) have large biases. The grouping estimator is a semiparametric estimator based on the grouping of data that does not require specific probability distributions. For 2D images, the grouping is simple. Monte Carlo experiments show that the grouping estimator clearly improves the probit MLE in many cases. The grouping estimator essentially makes the resolution density lower, and the present findings imply that methods using low-resolution image analyses might not be the proper ones in high-density image analyses. It is necessary to combine and compare the results of high- and low-resolution image analyses. The grouping estimator may provide theoretical justifications for such analysis. 展开更多
关键词 two-dimensional image Analysis High-Resolution and Low-Resolution Im-ages Semiparametric Estimator Machine Learning Grouping Estimator
下载PDF
Early prediction of myocardial viability after acute myocardial infarction by two-dimensional speckle tracking imaging 被引量:15
12
作者 Jong Shin Woo Tae-Kyung Yu Woo-Shik Kim Kwon Sam Kim Weon Kim 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2015年第5期474-481,共8页
Background Identifying the transmural extent of myocardial necrosis and the degree of myocardial viability in acute myocardial infarction (AMI) is important clinically. The aim of this study was to assess myocardial... Background Identifying the transmural extent of myocardial necrosis and the degree of myocardial viability in acute myocardial infarction (AMI) is important clinically. The aim of this study was to assess myocardial viability using two-dimensional speckle tracking imaging (2D-STI) in patients with AMI. Methods 2D-STI was performed at initial presentation, three days, and six months after primary percutaneous coronary intervention (PCI) in 30 patients with AMI, who had a left anterior descending coronary artery (LAD) culprit lesion. In addition, 20 patients who had minimal stenotic lesions (〈 30% stenosis) on coronary angiography were also included in the control group. At six months dobutamine echocardiography was performed for viability assessment in seven segments of the LAD territory. According to the recovery of wall motion abnormality, segments were classified as viable or non-viable. Results A total of 131 segments were viable, and 44 were nonviable. Multivariate analysis revealed significant differences between the viable and nonviable segments in the peak systolic strain, the peak systolic strain rate at initial presentation, and peak systolic strain rate three days after primary PCI. Among these, the initial peak systolic strain rate had the highest predictive value for myocardial viability (hazard ratio: 31.22, P 〈 0.01). Conclusions 2D-STI is feasible for assessing myocardial viability, and the peak systolic strain rate might be the most reliable predictor of myocardial viability in patients with AMI. 展开更多
关键词 Acute myocardial infarction two-dimensional speckle tracking imaging Viable myocardium
下载PDF
Underwater Terrain-Aided Navigation Based on Multibeam Bathymetric Sonar Images 被引量:2
13
作者 Ziqi Song Hongyu Bian Adam Zielinski 《Journal of Marine Science and Application》 CSCD 2015年第4期425-433,共9页
Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time ... Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters. 展开更多
关键词 underwater acoustics terrain-aided navigation sonar images HISTOGRAM autonomous underwater vehicle multibeam bathymetric sonar
下载PDF
Sonar Image Detection Algorithm Based on Two-Phase Manifold Partner Clustering 被引量:1
14
作者 Xingmei Wang Zhipeng Liu +1 位作者 Jianchuang Sun Shu Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期105-114,共10页
According to the characteristics of sonar image data with manifold feature,the sonar image detection method based on two-phase manifold partner clustering algorithm is proposed. Firstly,K-means block clustering based ... According to the characteristics of sonar image data with manifold feature,the sonar image detection method based on two-phase manifold partner clustering algorithm is proposed. Firstly,K-means block clustering based on euclidean distance is proposed to reduce the data set. Mean value,standard deviation,and gray minimum value are considered as three features based on the relatinship between clustering model and data structure. Then K-means clustering algorithm based on manifold distance is utilized clustering again on the reduced data set to improve the detection efficiency. In K-means clustering algorithm based on manifold distance,line segment length on the manifold is analyzed,and a new power function line segment length is proposed to decrease the computational complexity. In order to quickly calculate the manifold distance,new allsource shortest path as the pretreatment of efficient algorithm is proposed. Based on this,the spatial feature of the image block is added in the three features to get the final precise partner clustering algorithm. The comparison with the other typical clustering algorithms demonstrates that the proposed algorithm gets good detection result. And it has better adaptability by experiments of the different real sonar images. 展开更多
关键词 sonar image K-means CLUSTERING MANIFOLD distance line SEGMENT length
下载PDF
Two-dimensional horizontal visibility graph analysis of human brain aging on gray matter
15
作者 倪黄晶 杜若瑜 +3 位作者 梁磊 花玲玲 朱丽华 秦姣龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期558-563,共6页
Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic r... Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features,which cannot fully utilize the grayscale values containing important intrinsic information about brain structure.In this study,we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly.Normalized network structure entropy(NNSE)is then introduced to quantify the overall heterogeneities of these graphs.The results demonstrate a decrease in the NNSEs of gray matter with age.Compared with the middle-aged and the elderly,the larger values of the NNSE in the younger group may indicate more homogeneous network structures,smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion.In addition,the hub nodes of different adult age groups are primarily located in the precuneus,cingulate gyrus,superior temporal gyrus,inferior temporal gyrus,parahippocampal gyrus,insula,precentral gyrus and postcentral gyrus.Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging. 展开更多
关键词 two-dimensional horizontal visibility graph brain aging structural magnetic resonance imaging network structure entropy
下载PDF
IMPROVED SYNTHETIC APERTURE SONAR MOTION COMPENSATION COMBINED DPCA WITH SUB-APERTURE IMAGE CORRELATION 被引量:3
16
作者 Liu Wei Zhang Chunhua Liu Jiyuan 《Journal of Electronics(China)》 2009年第2期191-197,共7页
Estimation precision of Displaced Phase Center Algorithm(DPCA) is affected by the number of displaced phase center pairs,the bandwidth of transmitting signal and many other factors.Detailed analysis is made on DPCA... Estimation precision of Displaced Phase Center Algorithm(DPCA) is affected by the number of displaced phase center pairs,the bandwidth of transmitting signal and many other factors.Detailed analysis is made on DPCA's estimation precision.Analysis results show that the directional vector estimation precision of DPCA is low,which will produce accumulating errors when phase cen-ters' track is estimated.Because of this reason,DPCA suffers from accumulating errors seriously.To overcome this problem,a method combining DPCA with Sub Aperture Image Correlation(SAIC) is presented.Large synthetic aperture is divided into sub-apertures.Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data.Bulk errors between sub-apertures are esti-mated by SAIC and compensated directly to sub-aperture images.After that,sub-aperture images are directly used to generate ultimate SAS image.The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system.Results show the method can successfully remove the accumulating error and produce a better SAS image. 展开更多
关键词 Synthetic Aperture sonar(SAS) Motion compensation Sub-aperture image Correlation(IC)
下载PDF
Landslide data mosaicking based on an airborne laser point cloud and multi-beam sonar images 被引量:1
17
作者 JI Hao-wei LUO Xian-qi ZHOU Yong-jun 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2068-2080,共13页
Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have pr... Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have predominantly focused on landslides that occur on land.To this end,we aim to investigate ashore and underwater landslide data synchronously.This study proposes an optimized mosaicking method for ashore and underwater landslide data.This method fuses an airborne laser point cloud with multi-beam depth sounder images.Owing to their relatively high efficiency and large coverage area,airborne laser measurement systems are suitable for emergency investigations of landslides.Based on the airborne laser point cloud,the traversal of the point with the lowest elevation value in the point set can be used to perform rapid extraction of the crude channel boundaries.Further meticulous extraction of the channel boundaries is then implemented using the probability mean value optimization method.In addition,synthesis of the integrated ashore and underwater landslide data angle is realized using the spatial guide line between the channel boundaries and the underwater multibeam sonar images.A landslide located on the right bank of the middle reaches of the Yalong River is selected as a case study to demonstrate that the proposed method has higher precision thantraditional methods.The experimental results show that the mosaicking method in this study can meet the basic needs of landslide modeling and provide a basis for qualitative and quantitative analysis and stability prediction of landslides. 展开更多
关键词 Laser point cloud Airborne laser measurement Mosaicking method Multi-beam sonar images SHIPBORNE Channel boundaries
下载PDF
Sonar Image Registration and Mosaic Based on Line Detection and Triangle Matching 被引量:4
18
作者 LIU Tao ZHANG Xuguang +2 位作者 WANG Yuxi FANG Yinfeng GUO Chunsheng 《Instrumentation》 2020年第2期20-35,共16页
Image registration is an important research topic in the field of computer vision,in which the registration and mosaic of side-scan sonar images is the keypoints of underwater navigation.However,the image registration... Image registration is an important research topic in the field of computer vision,in which the registration and mosaic of side-scan sonar images is the keypoints of underwater navigation.However,the image registration method of keypoints is not suitable for sonar images which do not have obvious feature points.Therefore,a method of sonar-image registration and mosaic based on line segment extraction and triangle matching is proposed in this paper.Firstly,in order to extract features from sonar image,the LSD method is introduced to detect line feature from images,and line segments are filtered by the principle of attention;after that,triangles are formed from line segments,an image transformation matrix can be calculated through the heuristic greedy algorithm from these triangles;finally,images are merged based on the transformation information.On the basis of practical tests,it is found that,the feature extraction method used in this paper can better describe the outline of underwater terrain,and there is no obvious stitching gap between the result of sonar images stitched.Experimental results show that the proposed method is effective than the keypoints method of the registration and mosaic of sonar images. 展开更多
关键词 sonar image image Registration Line Segment Detector Triangle Matching
下载PDF
Visibility enhancement in two-dimensional lensless ghost imaging with true thermal light
19
作者 陈希浩 燕玲 +5 位作者 吴炜 孟少英 吴令安 孙志斌 王超 翟光杰 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期101-105,共5页
We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before i... We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight. 展开更多
关键词 ghost imaging true thermal light image visibility two-dimensional image
下载PDF
Segmentation of complex objects’ sonar images using parameter-fixed MRF model
20
作者 YAO Bin LI Hai-sen +1 位作者 ZHOU Tian SUN SHENG-he 《Journal of Marine Science and Application》 2006年第4期42-47,共6页
The effective method of the recognition of underwater complex objects in sonar image is to segment sonar image into target, shadow and sea-bottom reverberation regions and then extract the edge of the object. Because ... The effective method of the recognition of underwater complex objects in sonar image is to segment sonar image into target, shadow and sea-bottom reverberation regions and then extract the edge of the object. Because of the time-varying and space-varying characters of underwater acoustics environment, the sonar images have poor quality and serious speckle noise, so traditional image segmentation is unable to achieve precise segmentation. In the paper, the image segmentation process based on MRF (Markov random field) model is studied, and a practical method of estimating model parameters is proposed. Through analyzing the impact of chosen model parameters, a sonar imagery segmentation algorithm based on fixed parameters’ MRF model is proposed. Both of the segmentation effect and the low computing load are gained. By applying the algorithm to the synthesized texture image and actual side-scan sonar image, the algorithm can be achieved with precise segmentation result. 展开更多
关键词 parameter-fixed M RF model sonar image image segmentation
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部