期刊文献+
共找到258篇文章
< 1 2 13 >
每页显示 20 50 100
Performance Analysis of Sparse Array based Massive MIMO via Joint Convex Optimization 被引量:2
1
作者 Mengting Lou Jing Jin +5 位作者 Hanning Wang Dan Wu Liang Xia Qixing Wang Yifei Yuan Jiangzhou Wang 《China Communications》 SCIE CSCD 2022年第3期88-100,共13页
Massive multiple-input multiple-output(MIMO)technology enables higher data rate transmission in the future mobile communications.However,exploiting a large number of antenna elements at base station(BS)makes effective... Massive multiple-input multiple-output(MIMO)technology enables higher data rate transmission in the future mobile communications.However,exploiting a large number of antenna elements at base station(BS)makes effective implementation of massive MIMO challenging,due to the size and weight limits of the masssive MIMO that are located on each BS.Therefore,in order to miniaturize the massive MIMO,it is crucial to reduce the number of antenna elements via effective methods such as sparse array synthesis.In this paper,a multiple-pattern synthesis is considered towards convex optimization(CO).The joint convex optimization(JCO)based synthesis is proposed to construct a codebook for beamforming.Then,a criterion containing multiple constraints is developed,in which the sparse array is required to fullfill all constraints.Finally,extensive evaluations are performed under realistic simulation settings.The results show that with the same number of antenna elements,sparse array using the proposed JCO-based synthesis outperforms not only the uniform array,but also the sparse array with the existing CO-based synthesis method.Furthermore,with a half of the number of antenna elements that on the uniform array,the performance of the JCO-based sparse array approaches to that of the uniform array. 展开更多
关键词 B5G 6G sparse array joint convex optimization massive MIMO system-level simulation
下载PDF
DIRECTION-OF-ARRIVAL ESTIMATION IN THE PRESENCE OF MUTUAL COUPLING BASED ON JOINT SPARSE RECOVERY 被引量:2
2
作者 Wang Libin Cui Chen 《Journal of Electronics(China)》 2012年第5期408-414,共7页
A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of c... A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA information are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method. 展开更多
关键词 Direction-Of-Arrival (DOA) Uniform Linear Array (ULA) Mutual coupling joint sparse recovery
下载PDF
Non Sub-Sampled Contourlet with Joint Sparse Representation Based Medical Image Fusion
3
作者 Kandasamy Kittusamy Latha Shanmuga Vadivu Sampath Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1989-2005,共17页
Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image f... Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image fusion represents an indispensible role infixing major solutions for the complicated medical predicaments,while the recent research results have an enhanced affinity towards the preservation of medical image details,leaving color distortion and halo artifacts to remain unaddressed.This paper proposes a novel method of fusing Computer Tomography(CT)and Magnetic Resonance Imaging(MRI)using a hybrid model of Non Sub-sampled Contourlet Transform(NSCT)and Joint Sparse Representation(JSR).This model gratifies the need for precise integration of medical images of different modalities,which is an essential requirement in the diagnosing process towards clinical activities and treating the patients accordingly.In the proposed model,the medical image is decomposed using NSCT which is an efficient shift variant decomposition transformation method.JSR is exercised to extricate the common features of the medical image for the fusion process.The performance analysis of the proposed system proves that the proposed image fusion technique for medical image fusion is more efficient,provides better results,and a high level of distinctness by integrating the advantages of complementary images.The comparative analysis proves that the proposed technique exhibits better-quality than the existing medical image fusion practices. 展开更多
关键词 Medical image fusion computer tomography magnetic resonance imaging non sub-sampled contourlet transform(NSCT) joint sparse representation(JSR)
下载PDF
Nonequidistant two-dimensional antenna arrays based on magic squares
4
作者 V F Kravchenko V I Lutsenko +3 位作者 I V Lutsenko I V Popov LUO Yi-yang A V Mazurenko 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第3期244-253,共10页
New methods of synthetizing nonequidistant sparse antenna arrays based on the properties of magic squares are studied.The methods of construction and algorithms of synthesis of two-dimensional antennas based on them p... New methods of synthetizing nonequidistant sparse antenna arrays based on the properties of magic squares are studied.The methods of construction and algorithms of synthesis of two-dimensional antennas based on them providing a high degreeof dilution and sufficiently small side radiation are proposed.The methods for construction of such antennas and their maincharacteristics are considered. 展开更多
关键词 magic squares nonequidistant sparse antenna arrays two-dimensional antenna arrays
下载PDF
基于自适应矩阵的核联合稀疏表示高光谱图像分类
5
作者 陈善学 夏馨 《遥感信息》 CSCD 北大核心 2024年第2期19-27,共9页
针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像... 针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像素,充分融合了形状可变的空间信息与非线性光谱信息。在分类阶段,考虑自适应矩阵和高光谱图像非线性,采用对数欧式核函数,构建了核联合稀疏表示模型,以获得重构误差。同时利用字典空间信息构建了矩阵相关性,引入平衡参数实现了稀疏重构误差与矩阵相关性的联合分类。在两个数据集上的实验结果表明,该算法充分利用了高光谱图像的空间信息、光谱信息,能够有效提高分类精度。 展开更多
关键词 高光谱图像分类 核联合稀疏表示 自适应邻域块 自适应矩阵 矩阵相关性
下载PDF
基于多形态学成分分析的图像融合 被引量:1
6
作者 马晓乐 王志海 胡绍海 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期10-17,共8页
将多尺度分解与稀疏表示相结合,提出了一种基于多形态学成分分析(MCA)的图像融合算法。采用基于联合稀疏表示(JSR)的方法融合卡通子图像中的冗余和互补信息,并利用基于方向特征的方法融合具有更多细节信息和噪声的纹理子图像。结果表明... 将多尺度分解与稀疏表示相结合,提出了一种基于多形态学成分分析(MCA)的图像融合算法。采用基于联合稀疏表示(JSR)的方法融合卡通子图像中的冗余和互补信息,并利用基于方向特征的方法融合具有更多细节信息和噪声的纹理子图像。结果表明,提出的图像融合算法在主观视觉效果和客观评价指标上均优于先进的图像融合算法。 展开更多
关键词 图像融合 多尺度分解 形态学成分分析(MCA) 联合稀疏表示(JSR)
下载PDF
基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别 被引量:1
7
作者 王佳维 许枫 杨娟 《电子学报》 EI CAS CSCD 北大核心 2024年第1期217-231,共15页
针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗... 针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗余最大相关(minimum Redundancy and Maximum Relevance,mRMR)相结合的特征选择方法(RF-mRMR),得出综合的特征重要性排序结果 .通过实验得出分类模型所需的最优特征子集,达到降低数据处理复杂度和提高目标分类结果的目的 .为了捕捉到数据中的高阶结构,在联合稀疏表示模型的基础上,使用核函数将线性不可分的特征数据映射到高维核特征空间.为了充分挖掘稀疏重构后包含在残差波段中的有用信息,使用指数平滑公式对具有一定意义的残差信息进行再利用,最后由核特征空间下的最小误差准则判定目标的类别.应用本文提出的方法对4类目标的海试数据进行识别,结果表明,相较于其他7种对比算法,本文提出的改进方法具有更好的分类性能,而且大多数情况下,本文提出的算法在双基地声呐模式下具有比单基地声呐更高的识别准确率和更低的虚警率. 展开更多
关键词 多基地 水下小目标识别 多特征融合 特征选择 核空间联合稀疏表示 指数平滑
下载PDF
晋城市不同区域洪涝驱动要素分析 被引量:2
8
作者 舒心怡 徐宗学 +4 位作者 叶陈雷 廖如婷 黄亦轩 王京晶 贾书惠 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期203-217,共15页
兼顾城市不同空间特征的内涝问题,是提升城市防洪排涝能力的关键.本文以晋城市主城区为例,针对不同开发程度的管网密集区与管网稀疏区2类下垫面,构建SWMM-ICM-WCA2D模型,模拟不同降雨情景下管网排水与地表淹没状态,分析城市内涝驱动要素... 兼顾城市不同空间特征的内涝问题,是提升城市防洪排涝能力的关键.本文以晋城市主城区为例,针对不同开发程度的管网密集区与管网稀疏区2类下垫面,构建SWMM-ICM-WCA2D模型,模拟不同降雨情景下管网排水与地表淹没状态,分析城市内涝驱动要素.结果表明:管网密集区的内涝积水主要受降雨强度、管网排水能力和地形特征的影响,主城区现状管网设计标准较低,5 a一遇降雨条件下排水容量已趋于饱和;管网稀疏区高程≤751 m的淹没区水深较大,其余高程大的区域积水深度较小而流速较大;不同降雨情景下,管网指标与淹没要素间均表现出较强的相关性,特别在高水深(>1 m)时的联系更为密切,相关系数>0.78. 展开更多
关键词 城市洪涝 多模型联合 管网密集区 管网稀疏区 驱动要素
下载PDF
高光谱图像去噪的稀疏空谱Transformer模型 被引量:1
9
作者 杨智翔 孙玉宝 +1 位作者 白志远 栾鸿康 《电子测量技术》 北大核心 2024年第1期150-158,共9页
现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对... 现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用;为了应对这些问题,本文提出了一种新的稀疏空谱Transformer模型,提升了对空谱耦合关联性的利用。在空间维度,引入局部增强模块增强空间特征细节,应对过平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择前K个最相关的光谱通道特征进行特征交互,从而能够有效捕获空谱特征。最终通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。在ICVL数据集上分别对高斯噪声和复杂噪声进行去噪处理,峰值信噪比分别达到40.56 dB和40.19 dB,证明了本文提出的稀疏空谱Transformer模型优越的性能。 展开更多
关键词 高光谱图像去噪 空间-光谱联合特征 稀疏Transformer
下载PDF
脉冲干扰下基于变分贝叶斯推断的水声正交频分复用联合估计方法
10
作者 葛威 焦桦坤 +2 位作者 佟文涛 生雪莉 韩笑 《声学学报》 EI CAS CSCD 北大核心 2024年第5期1051-1060,共10页
脉冲干扰环境下水声正交频分复用通信性能严重下降,为此提出了基于变分贝叶斯推断的信道估计方法。该方法利用水声信道和脉冲干扰的稀疏特性,基于平均场变分贝叶斯推断,将信道向量和脉冲干扰向量的后验概率分布分别分解为简单概率分布... 脉冲干扰环境下水声正交频分复用通信性能严重下降,为此提出了基于变分贝叶斯推断的信道估计方法。该方法利用水声信道和脉冲干扰的稀疏特性,基于平均场变分贝叶斯推断,将信道向量和脉冲干扰向量的后验概率分布分别分解为简单概率分布进行拟合,基于导频子载波迭代直至收敛,得到信道和脉冲干扰的最大后验估计。所提方法改进了基于稀疏贝叶斯学习的干扰、信道联合估计方法中信道和干扰构成的联合向量无法分离二者稀疏度的问题,并且显著降低了计算复杂度。在此基础上,进一步提出了基于变分贝叶斯推断的干扰、信道和符号联合估计方法,将未知符号融入变分贝叶斯推断框架,与干扰和信道一起迭代,最终得到更精确的符号估计。仿真和试验结果验证了所提算法的有效性,与现有方法相比,本文所提方法具有更低的误码率和复杂度。 展开更多
关键词 正交频分复用 脉冲干扰 变分贝叶斯推断 稀疏贝叶斯学习 联合估计
下载PDF
卫星导航终端的阵列稀疏抗干扰算法
11
作者 常嵩雨 贾学东 陈国军 《导航定位学报》 CSCD 北大核心 2024年第6期105-110,共6页
针对导航终端抗干扰常用的技术手段中空时联合处理在工程应用中存在计算量过大的问题,提出一种基于空间相关系数的空时阵列稀疏算法:利用天线子集与空间相关系数结合来最大化信号和干扰的空间分离;并通过泰勒逼近得到最优天线子集。仿... 针对导航终端抗干扰常用的技术手段中空时联合处理在工程应用中存在计算量过大的问题,提出一种基于空间相关系数的空时阵列稀疏算法:利用天线子集与空间相关系数结合来最大化信号和干扰的空间分离;并通过泰勒逼近得到最优天线子集。仿真结果表明,该算法得到的稀疏阵列性能近似于满阵列,其计算量为满阵列的34.3%。 展开更多
关键词 全球卫星导航系统(GNSS) 空时联合处理 抑制干扰 空间相关系数 阵列天线 阵列稀疏算法
下载PDF
一种非二进制LDPC与SCMA系统的联合检测译码方案
12
作者 孙垠 葛文萍 +1 位作者 乔威 张世伟 《中国科技论文》 CAS 2024年第2期241-248,共8页
针对现有的一些低密度奇偶校验码(low-density parity code,LDPC)与稀疏码多址(sparse code multiple access,SCMA)系统联合检测方案复杂度高、误码率高、传输时延大、收敛速度慢的问题,提出一个非二进制低密度奇偶校验码(non-binary lo... 针对现有的一些低密度奇偶校验码(low-density parity code,LDPC)与稀疏码多址(sparse code multiple access,SCMA)系统联合检测方案复杂度高、误码率高、传输时延大、收敛速度慢的问题,提出一个非二进制低密度奇偶校验码(non-binary lowdensity parity code,NB-LDPC)与SCMA系统的联合检测译码(joint detection decoding,JDD)方案。在SCMA多用户检测部分改进基于阈值辅助的期望传播算法(expect propagation algorithm,EPA),在LDPC部分采用NB-LDPC并且在两节点更新过程选取部分消息状态值来改进译码算法,同时,利用联合因子图在联合检测译码信息交互时加入一种消息阻尼因子来提高收敛速度,最终完成联合检测译码过程。通过多角度仿真发现,该方案降低了复杂度和误码率,减小了传输时延,提高了收敛速度,并且在不同码本下均验证了所提方案的适用性。 展开更多
关键词 稀疏码多址 低密度奇偶校验码 联合检测译码 期望传播算法 消息阻尼因子
下载PDF
基于杂波和噪声联合稀疏特性的直接数据域STAP方法
13
作者 汪亚龙 王嘉恒 +2 位作者 李军 何勤 何子述 《系统工程与电子技术》 EI CSCD 北大核心 2024年第9期2980-2987,共8页
针对机载预警雷达空时自适应处理(space-time adaptive processing,STAP)所面临的异构杂波环境,基于杂波和噪声的联合稀疏特性提出了一种直接数据域(direct data domain,D3)STAP方法。首先通过子孔径平滑技术扩充训练样本集合;然后基于... 针对机载预警雷达空时自适应处理(space-time adaptive processing,STAP)所面临的异构杂波环境,基于杂波和噪声的联合稀疏特性提出了一种直接数据域(direct data domain,D3)STAP方法。首先通过子孔径平滑技术扩充训练样本集合;然后基于杂波谱二阶表征理论构造STAP功率字典矩阵、导出目标函数,并解得待检测单元信号的空时功率谱;最后根据杂波先验信息重构无孔径损失的杂波加噪声协方差矩阵。数值实验验证了所提方法的协方差矩阵估计精度高于传统的稀疏恢复D3-STAP算法,且在理想情况和存在阵列误差的情况下,所提方法皆具备更好的低速目标检测性能。 展开更多
关键词 空时自适应处理 直接数据域 联合稀疏特性 杂波谱二阶表征
下载PDF
基于IR-ADMM组合技术对地震随机噪声的压制
14
作者 龙乘滬 石战战 +3 位作者 祖芳 张海燕 何琴 张明杰 《贵州地质》 2024年第2期158-166,共9页
稀疏表示是一种现行有效的随机噪声压制方法,常采用交替方向乘子法逐道分解地震信号,但实际应用中交替方向乘子法计算效率高但精度不足,难以满足高保真地震数据处理的要求。通过结合迭代重加权和交替方向乘子法2种算法,提出了一种新的... 稀疏表示是一种现行有效的随机噪声压制方法,常采用交替方向乘子法逐道分解地震信号,但实际应用中交替方向乘子法计算效率高但精度不足,难以满足高保真地震数据处理的要求。通过结合迭代重加权和交替方向乘子法2种算法,提出了一种新的基于迭代重加权交替方向乘子法的联合稀疏表示方法,兼具收敛速度快和重建精度高的优点。共偏移距道集地震数据具有水平同相轴结构,满足共稀疏性条件,将联合稀疏表示算法应用于共偏移距道集就能够利用信号的空间相干性,提高去噪算法性能。理论和实际资料试算结果表明,所提算法具有较好的应用效果。 展开更多
关键词 交替方向乘子法 迭代重加权 联合稀疏表示 随机噪声压制 共偏移距道集
下载PDF
A Depth Video Coding In-Loop Median Filter Based on Joint Weighted Sparse Representation
15
作者 Lü Haitao YIN Cao +1 位作者 CUI Zongmin HU Jinhui 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第4期351-357,共7页
The existing depth video coding algorithms are generally based on in-loop depth filters, whose performance are unstable and easily affected by the outliers. In this paper, we design a joint weighted sparse representat... The existing depth video coding algorithms are generally based on in-loop depth filters, whose performance are unstable and easily affected by the outliers. In this paper, we design a joint weighted sparse representation-based median filter as the in-loop filter in depth video codec. It constructs depth candidate set which contains relevant neighboring depth pixel based on depth and intensity similarity weighted sparse coding, then the median operation is performed on this set to select a neighboring depth pixel as the result of the filtering. The experimental results indicate that the depth bitrate is reduced by about 9% compared with anchor method. It is confirmed that the proposed method is more effective in reducing the required depth bitrates for a given synthesis quality level. 展开更多
关键词 depth video coding virtual view synthesis joint weighted sparse representation
原文传递
Iterative subspace matching pursuit for joint sparse recovery
16
作者 Shu Feng Zhang Linghua Ding Yin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第2期26-35,共10页
Joint sparse recovery(JSR)in compressed sensing(CS)is to simultaneously recover multiple jointly sparse vectors from their incomplete measurements that are conducted based on a common sensing matrix.In this study,the ... Joint sparse recovery(JSR)in compressed sensing(CS)is to simultaneously recover multiple jointly sparse vectors from their incomplete measurements that are conducted based on a common sensing matrix.In this study,the focus is placed on the rank defective case where the number of measurements is limited or the signals are significantly correlated with each other.First,an iterative atom refinement process is adopted to estimate part of the atoms of the support set.Subsequently,the above atoms along with the measurements are used to estimate the remaining atoms.The estimation criteria for atoms are based on the principle of minimum subspace distance.Extensive numerical experiments were performed in noiseless and noisy scenarios,and results reveal that iterative subspace matching pursuit(ISMP)outperforms other existing algorithms for JSR. 展开更多
关键词 joint sparse recovery(JSR) multiple measurement vector(MMV) support set estimation compressed sensing(CS)
原文传递
一种基于改进多任务联合稀疏表示的道岔故障检测算法
17
作者 王培东 《铁道运营技术》 2024年第2期16-19,共4页
为提高道岔维护人员人工检查的工作效率,研究准确率更高的智能道岔故障检测算法,提出一种基于改进多任务联合稀疏表示分类的道岔故障检测算法。该算法以道岔转辙机设备的功率曲线为基础数据,应用小波包分解算法提取电流曲线的频域特征向... 为提高道岔维护人员人工检查的工作效率,研究准确率更高的智能道岔故障检测算法,提出一种基于改进多任务联合稀疏表示分类的道岔故障检测算法。该算法以道岔转辙机设备的功率曲线为基础数据,应用小波包分解算法提取电流曲线的频域特征向量,并融合曲线时域特征向量,选用多任务联合稀疏表示分类算法,辅以新型动态时间规整算法衍生核函数进行故障建模。经仿真实验,对收集的实际数据进行检测,模型正确率可达100%,验证了该算法的有效性,实现了智能道岔故障检测。 展开更多
关键词 故障检测 道岔 多任务联合稀疏表示 核函数 小波包
下载PDF
Ground-roll separation of seismic data based on morphological component analysis in twodimensional domain 被引量:2
18
作者 徐小红 屈光中 +2 位作者 张洋 毕云云 汪金菊 《Applied Geophysics》 SCIE CSCD 2016年第1期116-126,220,共12页
Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological cha... Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected. 展开更多
关键词 Ground-roll suppression morphological component analysis sparse representation two-dimensional undecimated discrete wavelet transform two-dimensional local discrete cosine transform
下载PDF
基于低秩子空间恢复的联合稀疏表示人脸识别算法 被引量:44
19
作者 胡正平 李静 《电子学报》 EI CAS CSCD 北大核心 2013年第5期987-991,共5页
针对阴影、反光及遮挡等原因破坏图像低秩结构这一问题,提出基于低秩子空间恢复的联合稀疏表示识别算法.首先将每个个体的所有训练样本图像看作矩阵D,将矩阵D分解为低秩矩阵A和稀疏误差矩阵E,其中A表示某类个体的‘干净’人脸,严格遵循... 针对阴影、反光及遮挡等原因破坏图像低秩结构这一问题,提出基于低秩子空间恢复的联合稀疏表示识别算法.首先将每个个体的所有训练样本图像看作矩阵D,将矩阵D分解为低秩矩阵A和稀疏误差矩阵E,其中A表示某类个体的‘干净’人脸,严格遵循子空间结构,E表示由阴影、反光、遮挡等引起的误差项,这些误差项破坏了人脸图像的低秩结构.然后用低秩矩阵A和误差矩阵E构造训练字典,将测试样本表示为低秩矩阵A和误差矩阵E的联合稀疏线性组合,利用这两部分的稀疏逼近计算残差,进行分类判别.实验证明该稀疏表示识别算法有效,识别精度得到了有效提高. 展开更多
关键词 人脸识别 稀疏表示 联合稀疏 低秩子空间恢复
下载PDF
基于稀疏贝叶斯学习的无源雷达高分辨成像 被引量:6
20
作者 王天云 于小飞 +2 位作者 陈卫东 丁丽 陈畅 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1023-1030,共8页
针对无源雷达压缩感知成像,该文提出一种基于稀疏贝叶斯学习的高分辨成像算法。基于一次快拍模式下的无源雷达回波模型,文中首先考虑目标散射系数的统计特性及其对微波频率的依赖关系,将无源雷达成像转化为MMV(Multiple Measurement Vec... 针对无源雷达压缩感知成像,该文提出一种基于稀疏贝叶斯学习的高分辨成像算法。基于一次快拍模式下的无源雷达回波模型,文中首先考虑目标散射系数的统计特性及其对微波频率的依赖关系,将无源雷达成像转化为MMV(Multiple Measurement Vector)联合稀疏优化问题;然后对目标建立了级联形式的稀疏先验模型,并利用稀疏贝叶斯学习技术进行求解。相比之前基于目标确定性假设的稀疏恢复方法,所提算法更好地利用了目标的统计先验信息,具有能够自适应调整参数(目标模型参数和未知噪声功率)和高分辨反演目标等优点。仿真结果验证了该算法的有效性。 展开更多
关键词 无源雷达 高分辨率成像 稀疏贝叶斯学习 联合稀疏优化
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部