Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D ma...Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.展开更多
Gene expression profile changes in brain regions following traumatic brain injury at the gene level cannot sufficiently elucidate gene expression time, expression amount, protein post-translational processing or modif...Gene expression profile changes in brain regions following traumatic brain injury at the gene level cannot sufficiently elucidate gene expression time, expression amount, protein post-translational processing or modification. Therefore, it is necessary to quantitatively analyze the gene expression profile using proteomic techniques. In the present study, we established a rat model of closed brain injury using Marmarou's weight-drop device, and investigated hippocampal differential protein expression using two-dimensional gel electrophoresis and surface-enhanced laser desorption ionization-time of flight-mass spectrometry. A total of 364 protein peaks were detected on weak cation exchange-2 protein chips, including 37 differential protein peaks. 345 protein peaks were detected on immobilized metal affinity capture arrays-Cu, including 12 differential protein peaks Further examination of these differential proteins revealed that glucose-regulated protein and proteasome subunit alpha type 3 expression were significantly upregulated post-injury. These results indicate that brain injury can alter protein expression in the hippocampus, and that glucose-regulated protein and proteasome subunit alpha type 3 are closely associated with the occurrence and development of traumatic brain injury.展开更多
We present an improved digital image processing(DIP)method to calculate the widths of single slits.Different from the traditional laser Fraunhofer diffraction experiment in college physical experiments,by performing f...We present an improved digital image processing(DIP)method to calculate the widths of single slits.Different from the traditional laser Fraunhofer diffraction experiment in college physical experiments,by performing fast Fourier transform,inverse fast Fourier transform and the nonlinear leastsquare fitting on the diffraction pattern taken by a camera,the DIP method can quickly return an analytic expression,whose period is used to calculate widths of single slits.By comparing the measured results by the DIP method and the successional difference(SD)method,we find that for a single slit whose width is 60372μm,the DIP method is more accurate.Experimental results show that for single slits with widths between 40μm and 160μm,the relative error of the DIP method is less than 2.78%.Also,the DIP method can be used to measure the diameter of filament and fibres online in real time.展开更多
Three-dimensional imaging with single orientation is a potential and novel technique. We successfully demonstrate that three-dimensional(3D) structure can be determined by a single orientation diffraction measuremen...Three-dimensional imaging with single orientation is a potential and novel technique. We successfully demonstrate that three-dimensional(3D) structure can be determined by a single orientation diffraction measurement for a phase object of double-layer Mie-scattering silica spheres on a Si3N4 membrane. Coherent diffraction pattern at high numerical aperture was acquired with an optical laser, and the oversampled pattern was projected from a planar detector onto the Ewald sphere.The double-layered spheres are reconstructed from the spherical diffraction pattern and a 2D curvature-corrected pattern,which improve convergence speed and stability of reconstruction.展开更多
The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be g...The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be greatly enhanced by using a two-dimensional undulator, for which l=s, so the harmonic number can be selected by selecting l. Therefore, the higher harmonic operation of a free-electron laser can be realized selectively.展开更多
The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti...The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp=790 rim). The refractive index modifications with diameters ranging from 400 nm to 4 gm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 ×10^13 W/cm2. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which low-density plasma occurred. The maximum refractive index change (An) was estimated to be 1.5x10 2. Several optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.展开更多
A two-dimensional silver nanoplate is prepared with the seed-mediated growth method and is used for achieving pulse fiber laser operation. By controlling the dimension parameters of the silver nanoplate, the surface p...A two-dimensional silver nanoplate is prepared with the seed-mediated growth method and is used for achieving pulse fiber laser operation. By controlling the dimension parameters of the silver nanoplate, the surface plasmon resonance absorption peak of the material is successfully adjusted to 1068 nm. Based on the silver nanoplate as a saturable absorber, a passively Q-switched Yb-doped fiber laser operating at 1062 nm is demonstrated. The maximum average output power of 3.49mW is obtained with a minimum pulse width of 1.84#s at a pulse repetition rate of 65.TkHz, and the corresponding pulse energy and peak power are 53.1 nJ and 28.8mW, respectively.展开更多
Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a ...Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.展开更多
In order to optimize the conditions for residual stress measurement using a two-dimensional X-ray diffraction (2D-XRD) in terms of both efficiency and accuracy. The measurements have been conducted on three stainless ...In order to optimize the conditions for residual stress measurement using a two-dimensional X-ray diffraction (2D-XRD) in terms of both efficiency and accuracy. The measurements have been conducted on three stainless steel specimens in this study. The three specimens were processed by annealing, a cavitating jet in air and a disc grinder, with each method introducing different residual stresses at the surface. The specimens were oscillated in the ω-direction, representing a right-hand rotation of the specimen about the incident X-ray beam. The range of the oscillation, Δω, was varied and optimum Δω was determined. Moreover, combinations of the tilt angle between the specimen surface normal and the diffraction vector, ψ, with the rotation angle about its surface normal, f, have been studied with a view to find the most optimum condition. The results show that the use of ω oscillations is an effective method for improving analysis accuracy, especially for large grain metals. The standard error rapidly decreased with increasing range of the ω oscillation, especially for the annealed specimen which generated strong diffraction spots due to its large grain size.展开更多
Based on a full vector-diffraction theory, a detailed theoretical study is carried out, aiming at providing a clear insight into the effects of different focusing and off-axis parabola parameters on far-field vector-d...Based on a full vector-diffraction theory, a detailed theoretical study is carried out, aiming at providing a clear insight into the effects of different focusing and off-axis parabola parameters on far-field vector-diffraction properties of an offaxis parabolic mirror in the presence of misalignments of the incoming beam. The physical origin of these effects is also explored. The results show that the far-field intensity profile is altered by the distortion-, coma-, and astigmatism-like aberrations, which are caused by oblique incidence rather than inherent aberrations for the off-axis configuration. The radius of 90% encircled energy also increases but does not change monotonically with incident beam size increasing, or rather,it first decreases and then increases. The focal shift strongly depends on the effective focal length and oblique incidence angle, but it is almost independent of the beam size, which affects the focusing spot patterns. The intensity distribution produces a higher astigmatic image with off-axis angle increasing. Coma-like aberration starts to become dominant with beam size increasing and results in larger curved propagation trajectory. The incident polarization also affects the intensity distribution. The variation in the Strehl ratio with oblique incidence angle strongly depends on the misalignment direction and beam size as well. In addition, we find that the difference in locus between the catacaustic and the diffraction focus in the meridian is small. But the locus of the sagittal foci is obviously different from the locus of the meridian foci and the catacaustic focus. Moreover, the peak intensity of the sagittal focus is maximum, and the ratio of the peak intensity to that in the meridian plane is approximately 1.5. Understanding these effects is valuable for assessing a practical focused intensity and describing the motion of charged particles under a strong electric field in ultraintense laser–matter interaction.展开更多
The digital communication of two-dimensional messages is investigated when two solid state multi-mode chaotic lasers are employed in a master-slave configuration. By introducing the time derivative of intensity differ...The digital communication of two-dimensional messages is investigated when two solid state multi-mode chaotic lasers are employed in a master-slave configuration. By introducing the time derivative of intensity difference between the receiver (carrier) and the transmittal (carrier plus signal), several signals can be encoded into a single pulse. If one signal contains several binary bits, two-dimensional messages in the form of a matrix can be encoded and transmitted on a single pulse. With these improvements in secure communications using chaotic multi-mode lasers, not only the transmission rate can be increased but also the privacy can be enhanced greatly.展开更多
The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deform...The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deformation and transmission electron microscopy.PBF-LB and heat treatment were employed to manufacture Al-12%Si binary alloy specimens with different microstructures.At an early stage of de-formation prior to macroscopic yielding,stress was dominantly partitioned into the α-Al matrix,rather than the Si phase in all specimens.Highly concentrated Si solute(~3%)in the α-Al matrix promoted the dynamic precipitation of nanoscale Si phase during loading,thereby increasing the yield strength.After macroscopic yielding,the partitioned stress in the Si phase monotonically increased in the strain-hardening regime with an increase in the dislocation density in the α-Al matrix.At a later stage of strain hardening,the flow curves of the partitioned stress in the Si phase yielded stress relaxation owing to plastic deformation.Therefore,Si-phase particles localized along the cell walls in the cellular-solidified microstructure play a significant role in dislocation obstacles for strain hardening.Compared with the results of the heat-treated specimens with different microstructural factors,the dominant strengthening factors of PBF-LB manufactured Al-Si alloys were discussed.展开更多
A new laser direct writing system is introduced and the potential application of the diffractive optical elements (DOE’s) fabricated by applying laser direct writing system are presented. The fabrication techniques b...A new laser direct writing system is introduced and the potential application of the diffractive optical elements (DOE’s) fabricated by applying laser direct writing system are presented. The fabrication techniques by applying the laser direct writing are developed. Experimental results have been obtained by applying laser direct writing machine with line width of 5μm and 10μm.展开更多
Over the past 50 years, lunar laser ranging has made great contributions to the understanding of the Earth–Moon system and the tests of general relativity. However, because of the lunar libration, the Apollo and Luno...Over the past 50 years, lunar laser ranging has made great contributions to the understanding of the Earth–Moon system and the tests of general relativity. However, because of the lunar libration, the Apollo and Lunokhod corner-cube retroreflector(CCR) arrays placed on the Moon currently limit the ranging precision to a few centimeters for a single photon received. Therefore, it is necessary to deploy a new retroreflector with a single and large aperture to improve the ranging precision by at least one order of magnitude. Here we present a hollow retroreflector with a 170-mm aperture fabricated using hydroxide-catalysis bonding technology. The precisions of the two dihedral angles are achieved by the mirror processing with a sub-arc-second precision perpendicularity, and the remaining one is adjusted utilizing an auxiliary optical configuration including two autocollimators. The achieved precisions of the three dihedral angles are 0.10 arcsecond,0.30 arc-second, and 0.24 arc-second, indicating the 68.5% return signal intensity of ideal Apollo 11/14 based on the far field diffraction pattern simulation. We anticipate that this hollow CCR can be applied in the new generation of lunar laser ranging.展开更多
The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstation...The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.展开更多
The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensi...The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (150 fs) Ti:sapphire laser (λp=790 nm).The refractive index modifications with diameters ranging from 400 nm to 3 μm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 2×1013 W/cm2.The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.展开更多
An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatte...An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening.展开更多
The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically a...The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.展开更多
Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that th...Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.展开更多
A method of studying a non-equilibrium x-ray laser plasma is developed by extending the existing one-dimensional similarity equations to the case of two-dimensional plasma study in the directions perpendicular to the ...A method of studying a non-equilibrium x-ray laser plasma is developed by extending the existing one-dimensional similarity equations to the case of two-dimensional plasma study in the directions perpendicular to the slab and along a focal line. With this method the characteristics of pre-plasma are optimized for transient neon-like Cr x-ray laser. It is found that when the duration and the intensity of 1.053μm pre-pulse are 1.2 ns and 6.5 TW/cm^2 respectively with a delay time of 1.5 ns, the temperature and the temperature discrepancy each approach a proper state, which will provide a uniform distribution of properly ionized neon-like Cr ions before the arrival of pumping pulse.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61307058,61378036,11304101,and 11474108)Guangdong Natural Science Funds for Distinguished Young Scholar,China(Grant No.2014A030306019)+6 种基金Pearl River S&T Nova Program of Guangzhou,China(Grant No.2014J2200008)Program for Outstanding Innovative Young Talents of Guangdong Province,China(Grant No.2014TQ01X220)Program for Outstanding Young Teachers in Guangdong Higher Education Institutes,China(Grant No.YQ2015051)Science and Technology Project of Guangdong,China(Grant No.2016B090925004)Foundation for Young Talents in Higher Education of Guangdong,China(Grant No.2017KQNCX051)Science and Technology Program of Guangzhou,China(Grant No.201607010245)Scientific Research Foundation of Young Teacher of South China Normal University,China(Grant No.17KJ09)
文摘Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.
基金the National Natural Science Foundation of China,No. 30471934
文摘Gene expression profile changes in brain regions following traumatic brain injury at the gene level cannot sufficiently elucidate gene expression time, expression amount, protein post-translational processing or modification. Therefore, it is necessary to quantitatively analyze the gene expression profile using proteomic techniques. In the present study, we established a rat model of closed brain injury using Marmarou's weight-drop device, and investigated hippocampal differential protein expression using two-dimensional gel electrophoresis and surface-enhanced laser desorption ionization-time of flight-mass spectrometry. A total of 364 protein peaks were detected on weak cation exchange-2 protein chips, including 37 differential protein peaks. 345 protein peaks were detected on immobilized metal affinity capture arrays-Cu, including 12 differential protein peaks Further examination of these differential proteins revealed that glucose-regulated protein and proteasome subunit alpha type 3 expression were significantly upregulated post-injury. These results indicate that brain injury can alter protein expression in the hippocampus, and that glucose-regulated protein and proteasome subunit alpha type 3 are closely associated with the occurrence and development of traumatic brain injury.
基金National Natural Science Foundtion of China(No.11435011)Young Teachers Fund of Nanjing Institute of Technology,China(Nos.QKJ201907 and QKJ201908)+2 种基金China Scholarship Council(No.201708320319)Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYZZ16-0349)Qing Lan Project of Jiangsu Province,China。
文摘We present an improved digital image processing(DIP)method to calculate the widths of single slits.Different from the traditional laser Fraunhofer diffraction experiment in college physical experiments,by performing fast Fourier transform,inverse fast Fourier transform and the nonlinear leastsquare fitting on the diffraction pattern taken by a camera,the DIP method can quickly return an analytic expression,whose period is used to calculate widths of single slits.By comparing the measured results by the DIP method and the successional difference(SD)method,we find that for a single slit whose width is 60372μm,the DIP method is more accurate.Experimental results show that for single slits with widths between 40μm and 160μm,the relative error of the DIP method is less than 2.78%.Also,the DIP method can be used to measure the diameter of filament and fibres online in real time.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2014CB910401)the National Natural Science Foundation of China(Grant Nos.31430031,21390414,and U1332118)
文摘Three-dimensional imaging with single orientation is a potential and novel technique. We successfully demonstrate that three-dimensional(3D) structure can be determined by a single orientation diffraction measurement for a phase object of double-layer Mie-scattering silica spheres on a Si3N4 membrane. Coherent diffraction pattern at high numerical aperture was acquired with an optical laser, and the oversampled pattern was projected from a planar detector onto the Ewald sphere.The double-layered spheres are reconstructed from the spherical diffraction pattern and a 2D curvature-corrected pattern,which improve convergence speed and stability of reconstruction.
文摘The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be greatly enhanced by using a two-dimensional undulator, for which l=s, so the harmonic number can be selected by selecting l. Therefore, the higher harmonic operation of a free-electron laser can be realized selectively.
基金Projects(2010-0001-226, 2010-0008-277) supported by NCRC(National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp=790 rim). The refractive index modifications with diameters ranging from 400 nm to 4 gm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 ×10^13 W/cm2. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which low-density plasma occurred. The maximum refractive index change (An) was estimated to be 1.5x10 2. Several optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.
基金Supported by the Foundation of Shandong Province under Grant No J13LN28the National Natural Science Foundation of China under Grant No 11304184
文摘A two-dimensional silver nanoplate is prepared with the seed-mediated growth method and is used for achieving pulse fiber laser operation. By controlling the dimension parameters of the silver nanoplate, the surface plasmon resonance absorption peak of the material is successfully adjusted to 1068 nm. Based on the silver nanoplate as a saturable absorber, a passively Q-switched Yb-doped fiber laser operating at 1062 nm is demonstrated. The maximum average output power of 3.49mW is obtained with a minimum pulse width of 1.84#s at a pulse repetition rate of 65.TkHz, and the corresponding pulse energy and peak power are 53.1 nJ and 28.8mW, respectively.
基金Project supported by the Shanghai Nanoscience Foundation,China (Grant Nos. 0852nm07000 and 0952nm07000)the National Natural Science Foundation of China (Grant Nos. 10804084 and 91123022)+1 种基金the National Key Technology R & D Program,China (Grant No. 2006BAF06B08)the Specialized Research Fund for the Doctoral Program of Ministry of High Education of China (Grant No. 200802471008)
文摘Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.
文摘In order to optimize the conditions for residual stress measurement using a two-dimensional X-ray diffraction (2D-XRD) in terms of both efficiency and accuracy. The measurements have been conducted on three stainless steel specimens in this study. The three specimens were processed by annealing, a cavitating jet in air and a disc grinder, with each method introducing different residual stresses at the surface. The specimens were oscillated in the ω-direction, representing a right-hand rotation of the specimen about the incident X-ray beam. The range of the oscillation, Δω, was varied and optimum Δω was determined. Moreover, combinations of the tilt angle between the specimen surface normal and the diffraction vector, ψ, with the rotation angle about its surface normal, f, have been studied with a view to find the most optimum condition. The results show that the use of ω oscillations is an effective method for improving analysis accuracy, especially for large grain metals. The standard error rapidly decreased with increasing range of the ω oscillation, especially for the annealed specimen which generated strong diffraction spots due to its large grain size.
基金Project supported by the Science Foundation for Youth Scholars of Minjiang University,China(Grant No.Mj9n201602)the National Science and Technology Major Project of the Ministry of Science and Technology of China。
文摘Based on a full vector-diffraction theory, a detailed theoretical study is carried out, aiming at providing a clear insight into the effects of different focusing and off-axis parabola parameters on far-field vector-diffraction properties of an offaxis parabolic mirror in the presence of misalignments of the incoming beam. The physical origin of these effects is also explored. The results show that the far-field intensity profile is altered by the distortion-, coma-, and astigmatism-like aberrations, which are caused by oblique incidence rather than inherent aberrations for the off-axis configuration. The radius of 90% encircled energy also increases but does not change monotonically with incident beam size increasing, or rather,it first decreases and then increases. The focal shift strongly depends on the effective focal length and oblique incidence angle, but it is almost independent of the beam size, which affects the focusing spot patterns. The intensity distribution produces a higher astigmatic image with off-axis angle increasing. Coma-like aberration starts to become dominant with beam size increasing and results in larger curved propagation trajectory. The incident polarization also affects the intensity distribution. The variation in the Strehl ratio with oblique incidence angle strongly depends on the misalignment direction and beam size as well. In addition, we find that the difference in locus between the catacaustic and the diffraction focus in the meridian is small. But the locus of the sagittal foci is obviously different from the locus of the meridian foci and the catacaustic focus. Moreover, the peak intensity of the sagittal focus is maximum, and the ratio of the peak intensity to that in the meridian plane is approximately 1.5. Understanding these effects is valuable for assessing a practical focused intensity and describing the motion of charged particles under a strong electric field in ultraintense laser–matter interaction.
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No BK2001138).
文摘The digital communication of two-dimensional messages is investigated when two solid state multi-mode chaotic lasers are employed in a master-slave configuration. By introducing the time derivative of intensity difference between the receiver (carrier) and the transmittal (carrier plus signal), several signals can be encoded into a single pulse. If one signal contains several binary bits, two-dimensional messages in the form of a matrix can be encoded and transmitted on a single pulse. With these improvements in secure communications using chaotic multi-mode lasers, not only the transmission rate can be increased but also the privacy can be enhanced greatly.
基金JST PRESTO(grant number JPMJPR22Q4)(Japan)The Light Metal Educational Foundation,Inc.(Japan),and“Knowledge Hub Aichi”Aichi Prefectural Government(Japan)The synchrotron radiation experiments were performed at BL46XUof SPring-8with the approval of the Japan Synchrotron Radiation Research Institute(JASRI)(Proposal No.2021A1663,2022A1001and 2022A1798).
文摘The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deformation and transmission electron microscopy.PBF-LB and heat treatment were employed to manufacture Al-12%Si binary alloy specimens with different microstructures.At an early stage of de-formation prior to macroscopic yielding,stress was dominantly partitioned into the α-Al matrix,rather than the Si phase in all specimens.Highly concentrated Si solute(~3%)in the α-Al matrix promoted the dynamic precipitation of nanoscale Si phase during loading,thereby increasing the yield strength.After macroscopic yielding,the partitioned stress in the Si phase monotonically increased in the strain-hardening regime with an increase in the dislocation density in the α-Al matrix.At a later stage of strain hardening,the flow curves of the partitioned stress in the Si phase yielded stress relaxation owing to plastic deformation.Therefore,Si-phase particles localized along the cell walls in the cellular-solidified microstructure play a significant role in dislocation obstacles for strain hardening.Compared with the results of the heat-treated specimens with different microstructural factors,the dominant strengthening factors of PBF-LB manufactured Al-Si alloys were discussed.
文摘A new laser direct writing system is introduced and the potential application of the diffractive optical elements (DOE’s) fabricated by applying laser direct writing system are presented. The fabrication techniques by applying the laser direct writing are developed. Experimental results have been obtained by applying laser direct writing machine with line width of 5μm and 10μm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11655001 and 11605065)
文摘Over the past 50 years, lunar laser ranging has made great contributions to the understanding of the Earth–Moon system and the tests of general relativity. However, because of the lunar libration, the Apollo and Lunokhod corner-cube retroreflector(CCR) arrays placed on the Moon currently limit the ranging precision to a few centimeters for a single photon received. Therefore, it is necessary to deploy a new retroreflector with a single and large aperture to improve the ranging precision by at least one order of magnitude. Here we present a hollow retroreflector with a 170-mm aperture fabricated using hydroxide-catalysis bonding technology. The precisions of the two dihedral angles are achieved by the mirror processing with a sub-arc-second precision perpendicularity, and the remaining one is adjusted utilizing an auxiliary optical configuration including two autocollimators. The achieved precisions of the three dihedral angles are 0.10 arcsecond,0.30 arc-second, and 0.24 arc-second, indicating the 68.5% return signal intensity of ideal Apollo 11/14 based on the far field diffraction pattern simulation. We anticipate that this hollow CCR can be applied in the new generation of lunar laser ranging.
基金the Shanghai Soft X-ray Free-Electron Laser Facility beamline projectionfunded by the Major State Basic Research Development Program of China(No.2017YFA0504802)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)National Natural Science Foundation of China(No.21727817).
文摘The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.
基金Project(2010-0008-277)supported by NCRC(National Core Research Center)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology
文摘The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (150 fs) Ti:sapphire laser (λp=790 nm).The refractive index modifications with diameters ranging from 400 nm to 3 μm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 2×1013 W/cm2.The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.
基金Project(CSTC2015ZDCY-ZTZX50002) supported by the Innovation Program of Common and Key Technologies in Major Industries of Chongqing,China
文摘An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening.
基金The project suported partially by National Natural Science Foundation of China
文摘The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.
基金supported by the Major State Basic Research Development Program of China (Grant No. 61363)the National Natural Science Foundation of China (Grant Nos. 50772019 and 61021061)
文摘Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474137,10874242 and 10775018)the National Basic Research Program of China (Grant No 2007CB815105)the Specialized Research Fund for the DoctoralProgram of Higher Education of China (Grant No 20070290008)
文摘A method of studying a non-equilibrium x-ray laser plasma is developed by extending the existing one-dimensional similarity equations to the case of two-dimensional plasma study in the directions perpendicular to the slab and along a focal line. With this method the characteristics of pre-plasma are optimized for transient neon-like Cr x-ray laser. It is found that when the duration and the intensity of 1.053μm pre-pulse are 1.2 ns and 6.5 TW/cm^2 respectively with a delay time of 1.5 ns, the temperature and the temperature discrepancy each approach a proper state, which will provide a uniform distribution of properly ionized neon-like Cr ions before the arrival of pumping pulse.