The local density of photonic states (LDPS) of an infinite two-dimensional (2D) photonic crystal (PC) composed of rotated square-pillars in a 2D square lattice is calculated in terms of the plane-wave expansion ...The local density of photonic states (LDPS) of an infinite two-dimensional (2D) photonic crystal (PC) composed of rotated square-pillars in a 2D square lattice is calculated in terms of the plane-wave expansion method in a combination with the point group theory. The calculation results show that the LDPS strongly depends on the spatial positions. The variations of the LDPS as functions of the radial coordinate and frequency exhibit “mountain chain” structures with sharp peaks. The LDPS with large value spans a finite area and falls abruptly down to small value at the position corresponding to the interfaces between two different refractive index materials. The larger/lower LDPS occurs inward the lower/larger dielectric-constant medium. This feature can be well interpreted by the continuity of electricdisplacement vector at the interface. In the frequency range of the pseudo-PBG (photonic band gap), the LDPS keeps very low value over the whole Wiger-Seitz cell. It indicates that the spontaneous emission in 2D PCs cannot be prohibited completely, but it can be inhibited intensively when the resonate frequency falls into the pseudo-PBG.展开更多
A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expans...A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expansion method. We find that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the E-polarization modes. The number, width and position of the photonic band gaps (PBGs) sensitively depend on the structure parameters (the layer thicknesses and dielectric constants) of the one-dimensional periodic background,展开更多
Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic c...Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.展开更多
Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion metho...Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion method were induced to obtain the band structures. That report shows the band diagrams with the effects of function coefficient k and medium column ra under TE and TM waves. The proposed results look correct at first glance, but the authors made some mistakes in their report. Thus, the calculated results in their paper are incorrect. According to our calculations, the errors in their report are corrected, and the correct band structures also are presented in this paper.展开更多
In this paper, we have designed and simulated all-optical tristate Pauli X, Y and Z gates using 2D photonic crystal. Simple line and point defects have been used to design the structure. The performance of the structu...In this paper, we have designed and simulated all-optical tristate Pauli X, Y and Z gates using 2D photonic crystal. Simple line and point defects have been used to design the structure. The performance of the structure has been analyzed and investigated by plane wave expansion(PWE) and finite difference time domain(FDTD) methods. Different performance parameters, namely contrast ratio(CR), rise time, fall time, delay time, response time and bit rate, have been calculated. The main advantage of the proposed design is that all the Pauli gates have been realized from a single structure. Due to compact size, fast response time, good CR and high bit rate, the proposed structure can be highly useful for optical computing, data processing and optical integrated circuits.展开更多
Two-dimensional (2D) triangular void channel photonic crystals with different lattice constants stacked in two different directions were fabricated by using femtosecond laser micro-explosion in solid polymer material....Two-dimensional (2D) triangular void channel photonic crystals with different lattice constants stacked in two different directions were fabricated by using femtosecond laser micro-explosion in solid polymer material. Fundamental and higher-order stop gaps were observed both in the infrared transmission and reflection spectra. There is an approximately linear relationship between the gap position and the lattice constant. The suppression of the fundamental gap is as high as 70% for 24-layer structures stacked in the T-M direction.展开更多
Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performa...Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the results show that within a very short coupling distance of about 3λ, where ), is the wavelength of signal in vacuum, the incident signals with different frequencies are separated into different channels with a contrast ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.展开更多
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photonic crystal structure was studied using transfer matrix method. Transmission spectra calculations indicate that such a 2D...The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photonic crystal structure was studied using transfer matrix method. Transmission spectra calculations indicate that such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizations and for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2D graphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some properties of a three-dimensional (3D) photonic crystal.展开更多
Light extraction efficiency of organic light emitting diode (OLED) based on various photonic crystal slab (PCS) structures was studied. By using the finite-difference time-domain (FDTD) method, we investigated t...Light extraction efficiency of organic light emitting diode (OLED) based on various photonic crystal slab (PCS) structures was studied. By using the finite-difference time-domain (FDTD) method, we investigated the effect of several parameters, including filling factor and lattice constant, on the enhancement of light extraction efficiency of three basic PCSs, and got the most effective one. Two novel designs of "interlaced" and "double-interlaced" PCS structures based on the most effective basic PCS structure were introduced, and the "interlaced" one was proved to be even more efficient than its prototype. Large enhancement of light extraction efficiency resulted from the coupling to leaky modes in the expended light cone of a band structure, the diffraction in the space between columns, as well as the strong scattering at indium-tinoxide/glass interfaces.展开更多
We theoretically demonstrate the imaging properties of a complex two-dimensional(2D) face-centered square lattice photonic crystal(PC) made from germanium cylinders in air background. The finitedifference time-domain(...We theoretically demonstrate the imaging properties of a complex two-dimensional(2D) face-centered square lattice photonic crystal(PC) made from germanium cylinders in air background. The finitedifference time-domain(FDTD) method is employed to calculate the band structure and simulate image construction. The band diagram of the complex structure is significantly compressed. Negative refraction occurs in the second energy band with negative phase velocity at a frequency of 0.228(2πc/a), which is lower than results from previous studies. Lower negative refraction frequency leads to higher image resolution. Numerical results show that the spatial resolution of the system reaches 0.7296λ, which is lower than the incident wavelength.展开更多
In this paper, via numerical simulation we designed the geometry of solar cell made by onedimensional (1D) and two-dimensional (2D) photonic crystals with two kinds of materiel (silicon (Si) and hydrogenated am...In this paper, via numerical simulation we designed the geometry of solar cell made by onedimensional (1D) and two-dimensional (2D) photonic crystals with two kinds of materiel (silicon (Si) and hydrogenated amorphous silicon (a-Si:H)) in order to enhance its absorption. The absorption characteristics of light in the solar cell structures are simulated by using finite-difference time-domain (FDTD) method. The calculation results show that the enhancement of absorption in patterned structure is apparent comparing to the unpatterned one, which proves the ability of the structure to produce photonic crystal solar cell. We found solar cell geometries as a 2D photonic crystal enable to increase the absorption between 380 and 750 nm.展开更多
Semiconductor lasers,an important subfield of semiconductor photonics,have fundamentally changed many aspects of our lives and enabled many technologies since their creation in the 1960s.As in other semiconductor-base...Semiconductor lasers,an important subfield of semiconductor photonics,have fundamentally changed many aspects of our lives and enabled many technologies since their creation in the 1960s.As in other semiconductor-based fields,such as microelectronics,miniaturization has been a constant theme,with nanolasers being an important frontier of research over the last decade.We review the progress,existing issues,and future prospects of nanolasers,especially in relation to their potential application in chip-scale optical interconnects.One of the important challenges in this application is minimizing the size and energy consumption of nanolasers.We begin with the application background of this challenge and then compare basic features of various semiconductor lasers.We present existing issues with nanolasers and discuss potential solutions to meet the size and energy-efficiency challenge.Our discussions cover a broad range of miniaturized lasers,including plasmonic nanolasers and lasers with two-dimensional monolayer gain materials,with focus on near-infrared wavelengths.展开更多
We demonstrate the first achievement of continuous-wave(CW)pumped second harmonic generation(SHG)in few-and monolayer gallium selenide(GaSe)flakes,which are coated on silicon photonic crystal(PC)cavities.Because of ul...We demonstrate the first achievement of continuous-wave(CW)pumped second harmonic generation(SHG)in few-and monolayer gallium selenide(GaSe)flakes,which are coated on silicon photonic crystal(PC)cavities.Because of ultrahigh second order nonlinearity of the two-dimensional(2D)GaSe and localized resonant mode in the PC cavity,SHG’s pump power is greatly reduced to microwatts.In a nine-layer GaSe coated PC cavity,while the optical power inside the GaSe flake is only 1.5%of that in the silicon PC slab,the SHG in GaSe is more than 650 times stronger than the third harmonic generation in silicon slab,indicating 2D GaSe’s great potentials to strengthen nonlinear processes in silicon photonics.Our study opens up a new view to expand 2D materials’optoelectronic applications in nonlinear regime and chip-integrated active devices.展开更多
基金Project supported by National Key Basic Research Special Fund of China and by Natural Science Foundation of Beijing, China.
文摘The local density of photonic states (LDPS) of an infinite two-dimensional (2D) photonic crystal (PC) composed of rotated square-pillars in a 2D square lattice is calculated in terms of the plane-wave expansion method in a combination with the point group theory. The calculation results show that the LDPS strongly depends on the spatial positions. The variations of the LDPS as functions of the radial coordinate and frequency exhibit “mountain chain” structures with sharp peaks. The LDPS with large value spans a finite area and falls abruptly down to small value at the position corresponding to the interfaces between two different refractive index materials. The larger/lower LDPS occurs inward the lower/larger dielectric-constant medium. This feature can be well interpreted by the continuity of electricdisplacement vector at the interface. In the frequency range of the pseudo-PBG (photonic band gap), the LDPS keeps very low value over the whole Wiger-Seitz cell. It indicates that the spontaneous emission in 2D PCs cannot be prohibited completely, but it can be inhibited intensively when the resonate frequency falls into the pseudo-PBG.
基金supported by the State Key Basic Research Program of China under Grant No.2006CB921607China-Australia Special Fund for Science and Technology
文摘A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expansion method. We find that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the E-polarization modes. The number, width and position of the photonic band gaps (PBGs) sensitively depend on the structure parameters (the layer thicknesses and dielectric constants) of the one-dimensional periodic background,
基金Project supported by the National Natural Science Foundations of China(Grant No.61275047)the Research Project of Chinese Ministry of Education(Grant No.213009A)the Scientific and Technological Development Foundation of Jilin Province,China(Grant No.20130101031JC)
文摘Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.
基金Project supported by the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(Grant No.2016T90455)the China Postdoctoral Science Foundation(Grant No.2015M581790)the Chinese Jiangsu Planned Projects for Postdoctoral Research Funds,China(Grant No.1501016A)
文摘Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion method were induced to obtain the band structures. That report shows the band diagrams with the effects of function coefficient k and medium column ra under TE and TM waves. The proposed results look correct at first glance, but the authors made some mistakes in their report. Thus, the calculated results in their paper are incorrect. According to our calculations, the errors in their report are corrected, and the correct band structures also are presented in this paper.
文摘In this paper, we have designed and simulated all-optical tristate Pauli X, Y and Z gates using 2D photonic crystal. Simple line and point defects have been used to design the structure. The performance of the structure has been analyzed and investigated by plane wave expansion(PWE) and finite difference time domain(FDTD) methods. Different performance parameters, namely contrast ratio(CR), rise time, fall time, delay time, response time and bit rate, have been calculated. The main advantage of the proposed design is that all the Pauli gates have been realized from a single structure. Due to compact size, fast response time, good CR and high bit rate, the proposed structure can be highly useful for optical computing, data processing and optical integrated circuits.
基金This work was produced with the assistance of the Australian Research Council (ARC) under the ARC Centres of Excellence Program. G. Zhou's e-mail address is gzhou@swin.edu.au.
文摘Two-dimensional (2D) triangular void channel photonic crystals with different lattice constants stacked in two different directions were fabricated by using femtosecond laser micro-explosion in solid polymer material. Fundamental and higher-order stop gaps were observed both in the infrared transmission and reflection spectra. There is an approximately linear relationship between the gap position and the lattice constant. The suppression of the fundamental gap is as high as 70% for 24-layer structures stacked in the T-M direction.
文摘Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the results show that within a very short coupling distance of about 3λ, where ), is the wavelength of signal in vacuum, the incident signals with different frequencies are separated into different channels with a contrast ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.
基金This work was supported by the National Natural Science Foundation under Grant No. 10274078. Y. Li is the author to whom the correspondence should be addressed,
文摘The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photonic crystal structure was studied using transfer matrix method. Transmission spectra calculations indicate that such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizations and for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2D graphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some properties of a three-dimensional (3D) photonic crystal.
基金This work was supported by the 2005 Nano-Science and Technology Foundation of Science and Technology Committee of Shanghai Municipality under Grant No. 0452nm056.
文摘Light extraction efficiency of organic light emitting diode (OLED) based on various photonic crystal slab (PCS) structures was studied. By using the finite-difference time-domain (FDTD) method, we investigated the effect of several parameters, including filling factor and lattice constant, on the enhancement of light extraction efficiency of three basic PCSs, and got the most effective one. Two novel designs of "interlaced" and "double-interlaced" PCS structures based on the most effective basic PCS structure were introduced, and the "interlaced" one was proved to be even more efficient than its prototype. Large enhancement of light extraction efficiency resulted from the coupling to leaky modes in the expended light cone of a band structure, the diffraction in the space between columns, as well as the strong scattering at indium-tinoxide/glass interfaces.
文摘We theoretically demonstrate the imaging properties of a complex two-dimensional(2D) face-centered square lattice photonic crystal(PC) made from germanium cylinders in air background. The finitedifference time-domain(FDTD) method is employed to calculate the band structure and simulate image construction. The band diagram of the complex structure is significantly compressed. Negative refraction occurs in the second energy band with negative phase velocity at a frequency of 0.228(2πc/a), which is lower than results from previous studies. Lower negative refraction frequency leads to higher image resolution. Numerical results show that the spatial resolution of the system reaches 0.7296λ, which is lower than the incident wavelength.
文摘In this paper, via numerical simulation we designed the geometry of solar cell made by onedimensional (1D) and two-dimensional (2D) photonic crystals with two kinds of materiel (silicon (Si) and hydrogenated amorphous silicon (a-Si:H)) in order to enhance its absorption. The absorption characteristics of light in the solar cell structures are simulated by using finite-difference time-domain (FDTD) method. The calculation results show that the enhancement of absorption in patterned structure is apparent comparing to the unpatterned one, which proves the ability of the structure to produce photonic crystal solar cell. We found solar cell geometries as a 2D photonic crystal enable to increase the absorption between 380 and 750 nm.
基金The author acknowledges funding support from the National Natural Science Foundation of China under Key Research Program“New Physics and Control of Light Field”(No.91750206)from Tsinghua University,from the Beijing National Research Center for Information Technology,the Beijing Innovation Center of Future Chips.
文摘Semiconductor lasers,an important subfield of semiconductor photonics,have fundamentally changed many aspects of our lives and enabled many technologies since their creation in the 1960s.As in other semiconductor-based fields,such as microelectronics,miniaturization has been a constant theme,with nanolasers being an important frontier of research over the last decade.We review the progress,existing issues,and future prospects of nanolasers,especially in relation to their potential application in chip-scale optical interconnects.One of the important challenges in this application is minimizing the size and energy consumption of nanolasers.We begin with the application background of this challenge and then compare basic features of various semiconductor lasers.We present existing issues with nanolasers and discuss potential solutions to meet the size and energy-efficiency challenge.Our discussions cover a broad range of miniaturized lasers,including plasmonic nanolasers and lasers with two-dimensional monolayer gain materials,with focus on near-infrared wavelengths.
基金support was provided by NSFC(61522507,11404264,61377035,11634010)the Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ6004)the Fundamental Research Funds for the Central Universities(3102017jc01001).
文摘We demonstrate the first achievement of continuous-wave(CW)pumped second harmonic generation(SHG)in few-and monolayer gallium selenide(GaSe)flakes,which are coated on silicon photonic crystal(PC)cavities.Because of ultrahigh second order nonlinearity of the two-dimensional(2D)GaSe and localized resonant mode in the PC cavity,SHG’s pump power is greatly reduced to microwatts.In a nine-layer GaSe coated PC cavity,while the optical power inside the GaSe flake is only 1.5%of that in the silicon PC slab,the SHG in GaSe is more than 650 times stronger than the third harmonic generation in silicon slab,indicating 2D GaSe’s great potentials to strengthen nonlinear processes in silicon photonics.Our study opens up a new view to expand 2D materials’optoelectronic applications in nonlinear regime and chip-integrated active devices.