With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years...With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years,two-dimensional(2D)molybdenum-based(Mo-based)materials have drawn considerable attention due to their exceptional characteristics,including low cost,unique crystal structure,high theoretical capacity and controllable chemical compositions.However,like other transition metal compounds,Mo-based materials are facing thorny challenges to overcome,such as slow electron/ion transfer kinetics and substantial volume changes during the charge and discharge processes.In this review,we summarize the recent progress in developing emerging 2D Mo-based electrode materials for MIBs,encompassing oxides,sulfides,selenides,carbides.After introducing the crystal structure and common synthesis methods,this review sheds light on the charge storage mechanism of several 2D Mo-based materials by various advanced characterization techniques.The latest achievements in utilizing 2D Mo-based materials as electrode materials for various MIBs(including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs)and zinc-ion batteries(ZIBs))are discussed in detail.Afterwards,the modulation strategies for enhancing the electrochemical performance of 2D Mo-based materials are highlighted,focusing on heteroatom doping,vacancies creation,composite coupling engineering and nanostructure design.Finally,we present the existing challenges and future research directions for 2D Mo-based materials to realize high-performance energy storage systems.展开更多
The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted t...The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics.展开更多
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b...Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.展开更多
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen...Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials.展开更多
The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectron...The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them.展开更多
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b...Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.展开更多
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ...Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.展开更多
Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders th...Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes.展开更多
Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk...Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.展开更多
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str...MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.展开更多
The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global deman...The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global demand for the development of an ideal energy alternative to fossil fuels that does not emit greenhouse gases.Electrochemical(EC) and photoelectrochemical(PEC) water splitting technologies have garnered significant attention worldwide for advanced hydrogen solar fuel production in recent decades.To achieve sustainable green H_(2) production,it is essential to create efficient catalyst materials that are low-cost and can replace expensive noble metal-based catalysts.These characteristics make them an ideal catalyst material for the process.Two-dimensional MXenes with M_(n+1)X_(n) structure have been identified as a promising option for EC and PEC water splitting due to their superior hydrophilicity,metal-like conductivity,large surface area,and adjustable surface chemistry.Here,we present a summary of recent advancements in the synthesis and performance enhancement methods for MXene hybrid materials in hydrogen production through EC and PEC water splitting.Furthermore,we examine the challenges and insights associated with the rational design of MXene-based hybrid materials to facilitate efficient water splitting for sustainable solar fuel production.展开更多
Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Re...Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Recently,typical 2D materials MoS2,graphene,MXenes,and black phosphorus have been widely investigated for their application in the hydrogen evolution reaction(HER).In this review,we summarize three efficient strategies—defect engineering,heterostructure formation,and heteroatom doping—for improving the HER performance of 2D catalysts.The d-band theory,density of states,and Fermi energy level are discussed to provide guidance for the design and construction of novel 2D materials.The challenges and prospects of 2D materials in the HER are also considered.展开更多
Large-area and high-quality two-dimensional crystals are the basis for the development of the next-generation electronic and optical devices.The synthesis of two-dimensional materials in wafer scales is the first crit...Large-area and high-quality two-dimensional crystals are the basis for the development of the next-generation electronic and optical devices.The synthesis of two-dimensional materials in wafer scales is the first critical step for future technology uptake by the industries;however,currently presented as a significant challenge.Substantial efforts have been devoted to producing atomically thin two-dimensional materials with large lateral dimensions,controllable and uniform thicknesses,large crystal domains and minimum defects.In this review,recent advances in synthetic routes to obtain high-quality two-dimensional crystals with lateral sizes exceeding a hundred micrometres are outlined.Applications of the achieved large-area two-dimensional crystals in electronics and optoelectronics are summarised,and advantages and disadvantages of each approach considering ease of the synthesis,defects,grain sizes and uniformity are discussed.展开更多
Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropi...Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.展开更多
The current energy crisis has prompted the development of new energy sources and energy storage/conversion devices. Membranes, as the key component, not only provide enormous separation potential for energy purificati...The current energy crisis has prompted the development of new energy sources and energy storage/conversion devices. Membranes, as the key component, not only provide enormous separation potential for energy purification but also guarantee stable and high-efficiency operation for rechargeable batteries and fuel cells. Remarkably, two-dimensional(2D) material separation membranes have attracted intense attention on their excellent performance in energy field applications, owing to high mechanical/chemical stability, low mass transport resistance, strict sizeexclusion, and abundant modifiable functional groups. In this review, we concentrate on the recent progress of 2D membrane and introduce 2D membranes based on graphene oxide(GO), MXenes, 2D MOFs, 2D COFs, and 2D zeolite nanosheets, which are applied in membrane separation(H2 collection and biofuel purification) and battery separators(vanadium flow battery, Li–S battery, and fuel cell). The mass transport mechanism, selectivity mechanism, and modification methods of these 2D membranes are stated in brief, mainly focusing on interlayer dominant membranes(GO and MXenes) and pore dominant membranes(MOFs, COFs, and zeolite nanosheets). In conclusion, we highlight the challenges and outlooks of applying 2D membranes in energy fields.展开更多
Two-dimensional black phosphorus(2D BP),an emerging material,has aroused tremendous interest once discovered.This is due to the fact that it integrates unprecedented properties of other 2D materials,such as tunable ba...Two-dimensional black phosphorus(2D BP),an emerging material,has aroused tremendous interest once discovered.This is due to the fact that it integrates unprecedented properties of other 2D materials,such as tunable bandgap structures,outstanding electrochemical properties,anisotropic mechanical,thermodynamic,and photoelectric properties,making it of great research value in many fields.The emergence of 2D BP has greatly promoted the development of electrochemical energy storage devices,especially lithium-ion batteries.However,in the application of 2D BP,there are still some problems to be solved urgently,such as the difficulty in the synthesis of large-scale high-quality phosphorene,poor environmental stability,and the volume expansion as electrode materials.Herein,according to the latest research progress of 2D BP in the field of energy storage,we systematically summarize and compare the preparation methods of phosphorene and discuss the basic structure and properties of BP,especially the environmental instability and passivation techniques.In particular,the practical application and challenges of 2D BP as anode material for lithium-ion batteries are analyzed in detail.Finally,some personal perspectives on the future development and challenges of BP are presented.展开更多
Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic mater...Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.展开更多
High-performance photodetectors are expected to open up revolutionary opportunities in many application fields, such as environment monitoring, military, optical communication and biomedical science. Combining two-dim...High-performance photodetectors are expected to open up revolutionary opportunities in many application fields, such as environment monitoring, military, optical communication and biomedical science. Combining two-dimensional materials(which have tunable optical absorption and high carrier mobility) with organic materials(which are abundant with low cost, high flexibility and large-area scalability) to form thin-film heterojunctions, high-responsivity photodetectors could be predicted with fast response speed in a wide spectra region.In this review, we give a comprehensive summary of photodetectors based on two-dimensional materials and organic thin-film heterojunctions, which includes hybrid assisted enhanced devices, single-layer enhanced devices, vertical heterojunction devices and tunable vertical heterojunction devices. We also give a systematic classification and perspectives on the future development of these types of photodetectors.展开更多
Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potent...Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potential in optoelectronic applications. High-performance and multifunctional devices were achieved by employing diverse designs, such as hybrid systems with nanostructured materials, bulk semiconductors and organics, forming 2D heterostructures. In this review, we mainly discuss the recent progress of 2D materials in high-responsive photodetectors, light-emitting devices and single photon emitters. Hybrid systems and van der Waals heterostructure-based devices are emphasized, which exhibit great potential in state-of-the-art applications.展开更多
Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, me...Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS2 and the new strategy for thermal management of MoS2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator.展开更多
基金supported by the National Natural Science Foundation of China(No.21676036)the Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing(No.CYB22043 and CYS22073)。
文摘With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years,two-dimensional(2D)molybdenum-based(Mo-based)materials have drawn considerable attention due to their exceptional characteristics,including low cost,unique crystal structure,high theoretical capacity and controllable chemical compositions.However,like other transition metal compounds,Mo-based materials are facing thorny challenges to overcome,such as slow electron/ion transfer kinetics and substantial volume changes during the charge and discharge processes.In this review,we summarize the recent progress in developing emerging 2D Mo-based electrode materials for MIBs,encompassing oxides,sulfides,selenides,carbides.After introducing the crystal structure and common synthesis methods,this review sheds light on the charge storage mechanism of several 2D Mo-based materials by various advanced characterization techniques.The latest achievements in utilizing 2D Mo-based materials as electrode materials for various MIBs(including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs)and zinc-ion batteries(ZIBs))are discussed in detail.Afterwards,the modulation strategies for enhancing the electrochemical performance of 2D Mo-based materials are highlighted,focusing on heteroatom doping,vacancies creation,composite coupling engineering and nanostructure design.Finally,we present the existing challenges and future research directions for 2D Mo-based materials to realize high-performance energy storage systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074301 and 12004295)China’s Postdoctoral Science Foundation funded project (Grant No.2022M722547)+1 种基金the Open Project of State Key Laboratory of Surface Physics (Grant No.KF2022 09)the Natural Science Foundation of Guizhou Provincial Education Department (Grant No.ZK[2021]034)。
文摘The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics.
基金financially supported by the Science and Technology Development Program of Jilin Province(YDZJ202101ZYTS185)the National Natural Science Foundation of China(21975250)。
文摘Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.
基金the National Natural Science Foundation of China(Grant No.12004439)Hunan Province Postgraduate Research and Innovation Project(Grant No.CX20230229)the computational resources from the High Performance Computing Center of Central South University.
文摘Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274264 and 11674197)the Natural Science Foundation of Shandong Province of China (Grant Nos.ZR2022MA039 and ZR2021MA105)the Qing-Chuang Science and Technology Plan of Shandong Province of China (Grant No.2019KJJ014)。
文摘The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61974075 and 61704121)+2 种基金the Natural Science Foundation of Tianjin Municipality(Grant Nos.22JCZDJC00460 and 19JCQNJC00700)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460).
文摘Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.
文摘Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.
基金the financial support of the National Natural Science Foundation of China(Nos.U21A20171,12074245,and 52102281)National Key R&D Program of China(Nos.2021YFB3800068 and 2020YFB1506400)+1 种基金Shanghai Sailing Program(No.21YF1421600)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2021QNRC001).
文摘Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes.
基金supported by the National Natural Science Foundation of China(62205183)the Research Grants Council of Hong Kong(ANR/RGC,Ref.No.A-CUHK404/21).
文摘Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2020R1A6A1A03043435 and 2020R1A2C1099862)supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(P0012451,The Competency Development Program for Industry Specialist)。
文摘MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.
基金the result of a research project conducted with the funds of the Open R&D program of Korea Electric Power Corporation (R23XO04)supported by the Technology Innovation Program funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) (K_G012002238601)+2 种基金by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002)by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021M3I3A1082880)by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20224000000320)。
文摘The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global demand for the development of an ideal energy alternative to fossil fuels that does not emit greenhouse gases.Electrochemical(EC) and photoelectrochemical(PEC) water splitting technologies have garnered significant attention worldwide for advanced hydrogen solar fuel production in recent decades.To achieve sustainable green H_(2) production,it is essential to create efficient catalyst materials that are low-cost and can replace expensive noble metal-based catalysts.These characteristics make them an ideal catalyst material for the process.Two-dimensional MXenes with M_(n+1)X_(n) structure have been identified as a promising option for EC and PEC water splitting due to their superior hydrophilicity,metal-like conductivity,large surface area,and adjustable surface chemistry.Here,we present a summary of recent advancements in the synthesis and performance enhancement methods for MXene hybrid materials in hydrogen production through EC and PEC water splitting.Furthermore,we examine the challenges and insights associated with the rational design of MXene-based hybrid materials to facilitate efficient water splitting for sustainable solar fuel production.
文摘Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Recently,typical 2D materials MoS2,graphene,MXenes,and black phosphorus have been widely investigated for their application in the hydrogen evolution reaction(HER).In this review,we summarize three efficient strategies—defect engineering,heterostructure formation,and heteroatom doping—for improving the HER performance of 2D catalysts.The d-band theory,density of states,and Fermi energy level are discussed to provide guidance for the design and construction of novel 2D materials.The challenges and prospects of 2D materials in the HER are also considered.
基金the financial support from“National Natural Science Foundation of China”(No.51850410506)。
文摘Large-area and high-quality two-dimensional crystals are the basis for the development of the next-generation electronic and optical devices.The synthesis of two-dimensional materials in wafer scales is the first critical step for future technology uptake by the industries;however,currently presented as a significant challenge.Substantial efforts have been devoted to producing atomically thin two-dimensional materials with large lateral dimensions,controllable and uniform thicknesses,large crystal domains and minimum defects.In this review,recent advances in synthetic routes to obtain high-quality two-dimensional crystals with lateral sizes exceeding a hundred micrometres are outlined.Applications of the achieved large-area two-dimensional crystals in electronics and optoelectronics are summarised,and advantages and disadvantages of each approach considering ease of the synthesis,defects,grain sizes and uniformity are discussed.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0301204)the National Natural Science Foundation of China(Grant Nos.11604326,11434010,11474277,and 11225421)
文摘Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.21908054 and 21908098)。
文摘The current energy crisis has prompted the development of new energy sources and energy storage/conversion devices. Membranes, as the key component, not only provide enormous separation potential for energy purification but also guarantee stable and high-efficiency operation for rechargeable batteries and fuel cells. Remarkably, two-dimensional(2D) material separation membranes have attracted intense attention on their excellent performance in energy field applications, owing to high mechanical/chemical stability, low mass transport resistance, strict sizeexclusion, and abundant modifiable functional groups. In this review, we concentrate on the recent progress of 2D membrane and introduce 2D membranes based on graphene oxide(GO), MXenes, 2D MOFs, 2D COFs, and 2D zeolite nanosheets, which are applied in membrane separation(H2 collection and biofuel purification) and battery separators(vanadium flow battery, Li–S battery, and fuel cell). The mass transport mechanism, selectivity mechanism, and modification methods of these 2D membranes are stated in brief, mainly focusing on interlayer dominant membranes(GO and MXenes) and pore dominant membranes(MOFs, COFs, and zeolite nanosheets). In conclusion, we highlight the challenges and outlooks of applying 2D membranes in energy fields.
基金the national science foundation of China(Nos.21373074 and 61675061)。
文摘Two-dimensional black phosphorus(2D BP),an emerging material,has aroused tremendous interest once discovered.This is due to the fact that it integrates unprecedented properties of other 2D materials,such as tunable bandgap structures,outstanding electrochemical properties,anisotropic mechanical,thermodynamic,and photoelectric properties,making it of great research value in many fields.The emergence of 2D BP has greatly promoted the development of electrochemical energy storage devices,especially lithium-ion batteries.However,in the application of 2D BP,there are still some problems to be solved urgently,such as the difficulty in the synthesis of large-scale high-quality phosphorene,poor environmental stability,and the volume expansion as electrode materials.Herein,according to the latest research progress of 2D BP in the field of energy storage,we systematically summarize and compare the preparation methods of phosphorene and discuss the basic structure and properties of BP,especially the environmental instability and passivation techniques.In particular,the practical application and challenges of 2D BP as anode material for lithium-ion batteries are analyzed in detail.Finally,some personal perspectives on the future development and challenges of BP are presented.
基金supported by National Science Foundation for Young Scientists of China (No.61905161 and 51702219)the National Natural Science Foundation of China (No.61975134,61875138 and 61775147)+1 种基金the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20180206121837007)the Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)
文摘Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.
基金Project supported by National Science Funds for Creative Research Groups of China(Grant No.61421002)
文摘High-performance photodetectors are expected to open up revolutionary opportunities in many application fields, such as environment monitoring, military, optical communication and biomedical science. Combining two-dimensional materials(which have tunable optical absorption and high carrier mobility) with organic materials(which are abundant with low cost, high flexibility and large-area scalability) to form thin-film heterojunctions, high-responsivity photodetectors could be predicted with fast response speed in a wide spectra region.In this review, we give a comprehensive summary of photodetectors based on two-dimensional materials and organic thin-film heterojunctions, which includes hybrid assisted enhanced devices, single-layer enhanced devices, vertical heterojunction devices and tunable vertical heterojunction devices. We also give a systematic classification and perspectives on the future development of these types of photodetectors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61422503 and 61376104)the Open Research Funds of Key Laboratory of MEMS of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities of China
文摘Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potential in optoelectronic applications. High-performance and multifunctional devices were achieved by employing diverse designs, such as hybrid systems with nanostructured materials, bulk semiconductors and organics, forming 2D heterostructures. In this review, we mainly discuss the recent progress of 2D materials in high-responsive photodetectors, light-emitting devices and single photon emitters. Hybrid systems and van der Waals heterostructure-based devices are emphasized, which exhibit great potential in state-of-the-art applications.
基金Project supported by the Science and Engineering Research Council,Singapore(Grant No.152-70-00017)the Agency for Science,Technology and Research(A*STAR)Singapore
文摘Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS2 and the new strategy for thermal management of MoS2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator.