An L-stable block method based on hybrid second derivative algorithm (BHSDA) is provided by a continuous second derivative method that is defined for all values of the independent variable and applied to parabolic par...An L-stable block method based on hybrid second derivative algorithm (BHSDA) is provided by a continuous second derivative method that is defined for all values of the independent variable and applied to parabolic partial differential equations (PDEs). The use of the BHSDA to solve PDEs is facilitated by the method of lines which involves making an approximation to the space derivatives, and hence reducing the problem to that of solving a time-dependent system of first order initial value ordinary differential equations. The stability properties of the method is examined and some numerical results presented.展开更多
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ...In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).展开更多
In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local trunc...In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively.展开更多
In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori er...In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.展开更多
In this paper, we study the oscillation of solutions to the systems of impulsive neutral delay parabolic partial differential equations. Under two different boundary conditions, we obtain some sufficient conditions fo...In this paper, we study the oscillation of solutions to the systems of impulsive neutral delay parabolic partial differential equations. Under two different boundary conditions, we obtain some sufficient conditions for oscillation of all solutions to the systems.展开更多
In this paper,a fitted Numerov method is constructed for a class of singularly perturbed one-dimensional parabolic partial differential equations with a small negative shift in the temporal variable.Similar boundary v...In this paper,a fitted Numerov method is constructed for a class of singularly perturbed one-dimensional parabolic partial differential equations with a small negative shift in the temporal variable.Similar boundary value problems are associated with a furnace used to process a metal sheet in control theory.Here,the study focuses on the effect of shift on the boundary layer behavior of the solution via finite difference approach.When the shift parameter is smaller than the perturbation parameter,the shifted term is expanded in Taylor series and an exponentially fitted tridiagonal finite difference scheme is developed.The proposed finite difference scheme is unconditionally stable.When the shift parameter is larger than the perturbation parameter,a special type of mesh is used for the temporal variable so that the shift lies on the nodal points and an exponentially fitted scheme is developed.This scheme is also unconditionally stable.The applicability of the proposed methods is demonstrated by means of two examples.展开更多
In this paper, oscillation of solutions to a class of impulsive delay parabolic partial differential equations system with higher order Laplace operator is studied. Under two different boundary value conditions, we es...In this paper, oscillation of solutions to a class of impulsive delay parabolic partial differential equations system with higher order Laplace operator is studied. Under two different boundary value conditions, we establish some sufficient criteria with respect to the oscillations of such systems, employing first-order impulsive delay differential inequalities. The results fully reflect the influence action of impulsive and delay in oscillation.展开更多
In this paper we establish the existence and uniqueness of weak solutions for the initial-boundary value problem of a nonlinear parabolic partial differential equation, which is related to the Malik-Perona model in im...In this paper we establish the existence and uniqueness of weak solutions for the initial-boundary value problem of a nonlinear parabolic partial differential equation, which is related to the Malik-Perona model in image analysis.展开更多
In this paper,we explore a new approach to design and analyze numerical schemes for backward stochastic differential equations(BSDEs).By the nonlinear Feynman-Kac formula,we reformulate the BSDE into a pair of referen...In this paper,we explore a new approach to design and analyze numerical schemes for backward stochastic differential equations(BSDEs).By the nonlinear Feynman-Kac formula,we reformulate the BSDE into a pair of reference ordinary differential equations(ODEs),which can be directly discretized by many standard ODE solvers,yielding the corresponding numerical schemes for BSDEs.In particular,by applying strong stability preserving(SSP)time discretizations to the reference ODEs,we can propose new SSP multistep schemes for BSDEs.Theoretical analyses are rigorously performed to prove the consistency,stability and convergency of the proposed SSP multistep schemes.Numerical experiments are further carried out to verify our theoretical results and the capacity of the proposed SSP multistep schemes for solving complex associated problems.展开更多
It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearities converge at least exponentially fast to...It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearities converge at least exponentially fast to the solution.In this paper we prove that this convergence is in fact at least square-root factorially fast.We show for one example that no higher convergence speed is possible in general.Moreover,if the nonlinearity is zindependent,then the convergence is even factorially fast.Thus we reveal a phase transition in the speed of convergence of Picard iterations of backward stochastic differential equations.展开更多
In this paper we describe new B-spline Gaussian collocation software for solving two-dimensional parabolic partial differential equations(PDEs)defined over a rectangular region.The numerical solution is represented as...In this paper we describe new B-spline Gaussian collocation software for solving two-dimensional parabolic partial differential equations(PDEs)defined over a rectangular region.The numerical solution is represented as a bi-variate piecewise polynomial(using a tensor product B-spline basis)with time-dependent unknown coefficients.These coefficients are determined by imposing collocation conditions:the numerical solution is required to satisfy the PDE and boundary conditions at images of the Gauss points mapped onto certain subregions of the spatial domain.This leads to a large system of time-dependent differential algebraic equations(DAEs)which is solved using the DAE solver,DASPK.We provide numerical results in which we use the new software,called BACOL2D,to solve three test problems.展开更多
文摘An L-stable block method based on hybrid second derivative algorithm (BHSDA) is provided by a continuous second derivative method that is defined for all values of the independent variable and applied to parabolic partial differential equations (PDEs). The use of the BHSDA to solve PDEs is facilitated by the method of lines which involves making an approximation to the space derivatives, and hence reducing the problem to that of solving a time-dependent system of first order initial value ordinary differential equations. The stability properties of the method is examined and some numerical results presented.
基金This work is supported by the National Fujian Province Nature Science Research Funds
文摘In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).
文摘In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively.
基金National Nature Science Foundation under Grants 60474027 and 10771211the National Basic Research Program under the Grant 2005CB321701
文摘In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.
基金Supported by the National Natural Science Foundation of China(10471086).
文摘In this paper, we study the oscillation of solutions to the systems of impulsive neutral delay parabolic partial differential equations. Under two different boundary conditions, we obtain some sufficient conditions for oscillation of all solutions to the systems.
基金The authors wish to thank the Department of Science&Technology,Government of India,for their financial support under the project No.SR/S4/MS:598/09.
文摘In this paper,a fitted Numerov method is constructed for a class of singularly perturbed one-dimensional parabolic partial differential equations with a small negative shift in the temporal variable.Similar boundary value problems are associated with a furnace used to process a metal sheet in control theory.Here,the study focuses on the effect of shift on the boundary layer behavior of the solution via finite difference approach.When the shift parameter is smaller than the perturbation parameter,the shifted term is expanded in Taylor series and an exponentially fitted tridiagonal finite difference scheme is developed.The proposed finite difference scheme is unconditionally stable.When the shift parameter is larger than the perturbation parameter,a special type of mesh is used for the temporal variable so that the shift lies on the nodal points and an exponentially fitted scheme is developed.This scheme is also unconditionally stable.The applicability of the proposed methods is demonstrated by means of two examples.
基金the Natural Science Foundation of Hunan Province under Grant 05JJ40008.
文摘In this paper, oscillation of solutions to a class of impulsive delay parabolic partial differential equations system with higher order Laplace operator is studied. Under two different boundary value conditions, we establish some sufficient criteria with respect to the oscillations of such systems, employing first-order impulsive delay differential inequalities. The results fully reflect the influence action of impulsive and delay in oscillation.
文摘In this paper we establish the existence and uniqueness of weak solutions for the initial-boundary value problem of a nonlinear parabolic partial differential equation, which is related to the Malik-Perona model in image analysis.
基金supported by the National Natural Science Foundations of China(Grant Nos.12071261,11831010)the National Key R&D Program(Grant No.2018YFA0703900).
文摘In this paper,we explore a new approach to design and analyze numerical schemes for backward stochastic differential equations(BSDEs).By the nonlinear Feynman-Kac formula,we reformulate the BSDE into a pair of reference ordinary differential equations(ODEs),which can be directly discretized by many standard ODE solvers,yielding the corresponding numerical schemes for BSDEs.In particular,by applying strong stability preserving(SSP)time discretizations to the reference ODEs,we can propose new SSP multistep schemes for BSDEs.Theoretical analyses are rigorously performed to prove the consistency,stability and convergency of the proposed SSP multistep schemes.Numerical experiments are further carried out to verify our theoretical results and the capacity of the proposed SSP multistep schemes for solving complex associated problems.
文摘It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearities converge at least exponentially fast to the solution.In this paper we prove that this convergence is in fact at least square-root factorially fast.We show for one example that no higher convergence speed is possible in general.Moreover,if the nonlinearity is zindependent,then the convergence is even factorially fast.Thus we reveal a phase transition in the speed of convergence of Picard iterations of backward stochastic differential equations.
文摘In this paper we describe new B-spline Gaussian collocation software for solving two-dimensional parabolic partial differential equations(PDEs)defined over a rectangular region.The numerical solution is represented as a bi-variate piecewise polynomial(using a tensor product B-spline basis)with time-dependent unknown coefficients.These coefficients are determined by imposing collocation conditions:the numerical solution is required to satisfy the PDE and boundary conditions at images of the Gauss points mapped onto certain subregions of the spatial domain.This leads to a large system of time-dependent differential algebraic equations(DAEs)which is solved using the DAE solver,DASPK.We provide numerical results in which we use the new software,called BACOL2D,to solve three test problems.