A one-dimensional silicon based photonic crystal with nonlinear defect layers is examined. The linear and nonlinear optical properties are analyzed. The transmission spectrum was obtained by applying the optical trans...A one-dimensional silicon based photonic crystal with nonlinear defect layers is examined. The linear and nonlinear optical properties are analyzed. The transmission spectrum was obtained by applying the optical transfer matrix formalism to the photonic crystal. The various transmittance peaks obtained with the defect layers are investigated. The nature of the transmittance peak is analyzed with the number of defect layers.展开更多
Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performa...Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the results show that within a very short coupling distance of about 3λ, where ), is the wavelength of signal in vacuum, the incident signals with different frequencies are separated into different channels with a contrast ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.展开更多
Owing to enhanced charge transport efficiency arising from the ultrathin nature,two-dimensional(2D)organic semiconductor single crystals(OSSCs)are emerging as a fascinating platform for high-performance organic field-...Owing to enhanced charge transport efficiency arising from the ultrathin nature,two-dimensional(2D)organic semiconductor single crystals(OSSCs)are emerging as a fascinating platform for high-performance organic field-effect transistors(OFETs).However,ucoffee-ring"effect induced by an evaporation-induced convective flow near the contact line hinders the large-area growth of 2D OSSCs through a solution process.Here,we develop a new strategy of suppressing the"coffee-ring"effect by using an organic semiconductor:polymer blend solution.With the high-viscosity polymer in the organic solution,the evaporation-induced flow is remarkably weakened,ensuring the uniform molecule spreading for the 2D growth of the OSSCs.As an example,wafer-scale growth of crystalline film consisting of few-layered 2,7-didecylbenzothienobenzothiophene(C10-BTBT)crystals was successfully accomplished via blade coating.OFETs based on the crystalline film exhibited a maximum hole mobility up to 12.6 cm^2·V^-1·s^-1,along with an average hole mobility as high as 8.2 cm^2·V^-1·s^-1.Our work provides a promising strategy for the large-area growth of 2D OSSCs toward high-performance organic electronics.展开更多
Two-dimensional materials with active sites are expected to replace platinum as large-scale hydrogen production catalysts.However,the rapid discovery of excellent two-dimensional hydrogen evolution reaction catalysts ...Two-dimensional materials with active sites are expected to replace platinum as large-scale hydrogen production catalysts.However,the rapid discovery of excellent two-dimensional hydrogen evolution reaction catalysts is seriously hindered due to the long experiment cycle and the huge cost of high-throughput calculations of adsorption energies.Considering that the traditional regression models cannot consider all the potential sites on the surface of catalysts,we use a deep learning method with crystal graph convolutional neural networks to accelerate the discovery of high-performance two-dimensional hydrogen evolution reaction catalysts from two-dimensional materials database,with the prediction accuracy as high as 95.2%.The proposed method considers all active sites,screens out 38 high performance catalysts from 6,531 two-dimensional materials,predicts their adsorption energies at different active sites,and determines the potential strongest adsorption sites.The prediction accuracy of the two-dimensional hydrogen evolution reaction catalysts screening strategy proposed in this work is at the density-functional-theory level,but the prediction speed is 10.19 years ahead of the high-throughput screening,demonstrating the capability of crystal graph convolutional neural networks-deep learning method for efficiently discovering high-performance new structures over a wide catalytic materials space.展开更多
Novel optical properties in graded photonic super-crystals can be further explored if new types of graded photonic super-crystals are fabricated.In this paper,we report holographic fabrication of graded photonic super...Novel optical properties in graded photonic super-crystals can be further explored if new types of graded photonic super-crystals are fabricated.In this paper,we report holographic fabrication of graded photonic super-crystal with eight graded lattice clusters surrounding the central non-gradient lattices through pixel-by-pixel phase engineering in a spatial light modulator.The prospect of applications of octagon graded photonic super-crystal in topological photonics is discussed through photonic band gap engineering and coupled ring resonators.展开更多
In this paper, via numerical simulation we designed the geometry of solar cell made by onedimensional (1D) and two-dimensional (2D) photonic crystals with two kinds of materiel (silicon (Si) and hydrogenated am...In this paper, via numerical simulation we designed the geometry of solar cell made by onedimensional (1D) and two-dimensional (2D) photonic crystals with two kinds of materiel (silicon (Si) and hydrogenated amorphous silicon (a-Si:H)) in order to enhance its absorption. The absorption characteristics of light in the solar cell structures are simulated by using finite-difference time-domain (FDTD) method. The calculation results show that the enhancement of absorption in patterned structure is apparent comparing to the unpatterned one, which proves the ability of the structure to produce photonic crystal solar cell. We found solar cell geometries as a 2D photonic crystal enable to increase the absorption between 380 and 750 nm.展开更多
During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mech...During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mechanical,thermal,electrical and optical properties,which are distinct from their counterparts in the bulk format.Various fabrication methods,such as soft-lithography,screen-printing,colloidal-templating and chemical/dry etching have been developed to fabricate micro/ nanostructures in 2D materials.Direct laser fabrication with the advantages of unique three-dimensional(3D)processing capability,arbitrary-shape designability and high fabrication accuracy up to tens of nanometers,which is far beyond the optical diffraction limit,has been widely studied and applied in the fabrication of various micro/ nanostructures of 2D materials for functional devices.This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics,optoelectronics,and electrochemical energy storage devices.The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.展开更多
Synthetic two-dimensional(2 D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2 D structures bring superior properties. Although, from linear ...Synthetic two-dimensional(2 D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2 D structures bring superior properties. Although, from linear to 2 D polymers, the study of these new materials is still in its infancy, they already show potential applications especially in optoelectronics, membranes, energy storage and catalysis, etc. In this review, we summarize the recent progress of the 2 D materials from three respects:(1) Chemistry—different types of polymerization reactions or supramolecular assembly to construct the 2 D networks were described;(2) Preparation methods—surface science, crystal engineering approaches and solution synthesis were introduced;(3) Functionalization and some early applications.展开更多
In this paper,we report on polarization combining two-dimensional grating couplers(2D GCs)on amorphous Si:H,fabricated in the backend of line of a photonic BiCMOS platform.The 2D GCs can be used as an interface of a h...In this paper,we report on polarization combining two-dimensional grating couplers(2D GCs)on amorphous Si:H,fabricated in the backend of line of a photonic BiCMOS platform.The 2D GCs can be used as an interface of a hybrid silicon photonic coherent transmitter,which can be implemented on bulk Si wafers.The fabricated 2D GCs operate in the telecom C-band and show an experimental coupling efficiency of−5 dB with a wafer variation of±1.2 dB.Possibilities for efficiency enhancement and improved performance stability in future design generations are outlined and extension toward O-band devices is also investigated.展开更多
The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applie...The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applied to free-space two-dimensional (2D) photonic devices because the surface-incident absolute absorption of SLG is limited to 1%–2%. No significant change in either reflectance or transmittance would be observed even if SLG is made transparent upon gating. To achieve significantly enhanced surface-incident optical absorption in SLG in a device structure that also allows gating, here we embed SLG in an optical slot-antenna-coupled cavity (SAC) framework, simultaneously enhancing SLG absorption by up to 20 times and potentially enabling electrical gating of SLG as a step towards tunable 2D photonic surfaces. This framework synergistically integrates near-field enhancement induced by ultrahigh refractive index semimetal slot-antenna with broadband resonances in visible and infrared regimes, ~ 3 times more effective than a vertical cavity structure alone. An example of this framework consists of self-assembled, close-packed Sn nanodots separated by ~ 10 nm nanogaps on a SLG/SiO2/Al stack, which dramatically increases SLG optical absorption to 10%-25% at λ = 600–1,900 nm. The enhanced SLG absorption spectrum can also be controlled by the insulator thickness. For example, SLG embedded in this framework with a 150 nm-thick SiO2 insulating layer displays a distinctive red color in contrast to its surrounding regions without SLG on the same sample under white light illumination. This opens a potential path towards gate-tunable spectral reflectors. Overall, this work initiates a new approach towards tunable 2D photonic surfaces.展开更多
Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effect...Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effects of edges on the band structure and properties of these materials. Here we developed an approach for synthesizing MoS2 nanobelts terminated with vertically aligned edges by sulfurizing hydrothermally synthesized MoO3 nanobelts in the gas phase through a kinetically driven process; we then investigated the electrical and magnetic properties of these metastable materials. These edge-terminated MoS2 nanobelts were found to be metallic and ferromagnetic, and thus dramatically different from the semiconducting and nonmagnetic two-dimensional (2D) and three-dimensional (3D) 2H-MoS2 materials. The transitions in electrical and magnetic properties elucidate the fact that edges can tune the properties of low dimensional materials. The unique structure and properties of this one-dimensional (1D) MoS2 material will enable its applications in electronics, spintronics, and catalysis.展开更多
Photogating and electrical gating are key physical mechanisms in organic phototransistors(OPTs).However,most OPTs are based on thick and polycrystalline films,which leads to substantially low efficiency of both photog...Photogating and electrical gating are key physical mechanisms in organic phototransistors(OPTs).However,most OPTs are based on thick and polycrystalline films,which leads to substantially low efficiency of both photogating and electrical gating and thus reduced photoresponse.Herein,high-performance OPTs based on few-layered organic single-crystalline heterojunctions are proposed and the obstacle of thick and polycrystalline films for photodetection is overcome.Because of the molecular scale thickness of the type I organic single-crystalline heterojunctions in OPTs,both photogating and electrical gating are highly efficient.By synergy of efficient photogating and electrical gating,key figures of merit of OPTs reach the highest among those based on planar heterojunctions so far as we know.The production of few-layered organic single-crystalline heterojunctions will provide a new type of advanced materials for various applications.展开更多
Assembly of two-dimensional (2D) nanomaterials into well-organized architectures is pivotal for controlling their function and enhancing performance. As a promising class of 2D nanomaterials, MXenes have attracted sig...Assembly of two-dimensional (2D) nanomaterials into well-organized architectures is pivotal for controlling their function and enhancing performance. As a promising class of 2D nanomaterials, MXenes have attracted significant interest for use in wearable electronics due to their unique electrical and mechanical properties. However, facile approaches for fabricating MXenes into macroscopic fibers with controllable structures are limited. In this study, we present a strategy for easily spinning MXene fibers by incorporating polyanions. The introduction of poly(acrylic acid) (PAA) into MXene colloids has been found to alter MXene aggregation behavior, resulting in a reduced concentration threshold for lyotropic liquid crystal phase. This modification also enhances the viscosity and shear sensitivity of MXene colloids. Consequently, we were able to draw continuous fibers directly from the gel of MXene aggregated with PAA. These fibers exhibit homogeneous diameter and high alignment of MXene nanosheets, attributed to the shear-induced long-range order of the liquid crystal phase. Furthermore, we demonstrate proof-of-concept applications of the ordered MXene fibers, including textile-based supercapacitor, sensor and electrical thermal management, highlighting their great potential applied in wearable electronics. This work provides a guideline for processing 2D materials into controllable hierarchical structures by regulating aggregation behavior through the addition of ionic polymers.展开更多
文摘A one-dimensional silicon based photonic crystal with nonlinear defect layers is examined. The linear and nonlinear optical properties are analyzed. The transmission spectrum was obtained by applying the optical transfer matrix formalism to the photonic crystal. The various transmittance peaks obtained with the defect layers are investigated. The nature of the transmittance peak is analyzed with the number of defect layers.
文摘Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the results show that within a very short coupling distance of about 3λ, where ), is the wavelength of signal in vacuum, the incident signals with different frequencies are separated into different channels with a contrast ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.
基金This work was supported by the National Natural Science Foundation of China(Nos.51973147,61904117,51821002 and 51672180)the Natural Science Foundation of Jiangsu Province of China(No.BK20180845)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the 111 Project,Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesThe authors thank the Collaborative Innovation Center of Suzhou Nano Science and Technology(Nano-CIC),Soochow University and Beamline BLI4B1(Shanghai Synchrotron Radiation Facility)for providing beam time.
文摘Owing to enhanced charge transport efficiency arising from the ultrathin nature,two-dimensional(2D)organic semiconductor single crystals(OSSCs)are emerging as a fascinating platform for high-performance organic field-effect transistors(OFETs).However,ucoffee-ring"effect induced by an evaporation-induced convective flow near the contact line hinders the large-area growth of 2D OSSCs through a solution process.Here,we develop a new strategy of suppressing the"coffee-ring"effect by using an organic semiconductor:polymer blend solution.With the high-viscosity polymer in the organic solution,the evaporation-induced flow is remarkably weakened,ensuring the uniform molecule spreading for the 2D growth of the OSSCs.As an example,wafer-scale growth of crystalline film consisting of few-layered 2,7-didecylbenzothienobenzothiophene(C10-BTBT)crystals was successfully accomplished via blade coating.OFETs based on the crystalline film exhibited a maximum hole mobility up to 12.6 cm^2·V^-1·s^-1,along with an average hole mobility as high as 8.2 cm^2·V^-1·s^-1.Our work provides a promising strategy for the large-area growth of 2D OSSCs toward high-performance organic electronics.
基金The authors are grateful for the financial support provided by the National Key Laboratory of Science and Technology on Micro/Nano Fabrication of China,the National Natural Science Foundation of China (No.21901157)the SJTU Global Strategic Partnership Fund (2020 SJTU-HUJI)the National Key R&D Program of China (2021YFC2100100).
文摘Two-dimensional materials with active sites are expected to replace platinum as large-scale hydrogen production catalysts.However,the rapid discovery of excellent two-dimensional hydrogen evolution reaction catalysts is seriously hindered due to the long experiment cycle and the huge cost of high-throughput calculations of adsorption energies.Considering that the traditional regression models cannot consider all the potential sites on the surface of catalysts,we use a deep learning method with crystal graph convolutional neural networks to accelerate the discovery of high-performance two-dimensional hydrogen evolution reaction catalysts from two-dimensional materials database,with the prediction accuracy as high as 95.2%.The proposed method considers all active sites,screens out 38 high performance catalysts from 6,531 two-dimensional materials,predicts their adsorption energies at different active sites,and determines the potential strongest adsorption sites.The prediction accuracy of the two-dimensional hydrogen evolution reaction catalysts screening strategy proposed in this work is at the density-functional-theory level,but the prediction speed is 10.19 years ahead of the high-throughput screening,demonstrating the capability of crystal graph convolutional neural networks-deep learning method for efficiently discovering high-performance new structures over a wide catalytic materials space.
基金National Science Foundation(NSF)(Nos.1661842 and 1661749)。
文摘Novel optical properties in graded photonic super-crystals can be further explored if new types of graded photonic super-crystals are fabricated.In this paper,we report holographic fabrication of graded photonic super-crystal with eight graded lattice clusters surrounding the central non-gradient lattices through pixel-by-pixel phase engineering in a spatial light modulator.The prospect of applications of octagon graded photonic super-crystal in topological photonics is discussed through photonic band gap engineering and coupled ring resonators.
文摘In this paper, via numerical simulation we designed the geometry of solar cell made by onedimensional (1D) and two-dimensional (2D) photonic crystals with two kinds of materiel (silicon (Si) and hydrogenated amorphous silicon (a-Si:H)) in order to enhance its absorption. The absorption characteristics of light in the solar cell structures are simulated by using finite-difference time-domain (FDTD) method. The calculation results show that the enhancement of absorption in patterned structure is apparent comparing to the unpatterned one, which proves the ability of the structure to produce photonic crystal solar cell. We found solar cell geometries as a 2D photonic crystal enable to increase the absorption between 380 and 750 nm.
文摘During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mechanical,thermal,electrical and optical properties,which are distinct from their counterparts in the bulk format.Various fabrication methods,such as soft-lithography,screen-printing,colloidal-templating and chemical/dry etching have been developed to fabricate micro/ nanostructures in 2D materials.Direct laser fabrication with the advantages of unique three-dimensional(3D)processing capability,arbitrary-shape designability and high fabrication accuracy up to tens of nanometers,which is far beyond the optical diffraction limit,has been widely studied and applied in the fabrication of various micro/ nanostructures of 2D materials for functional devices.This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics,optoelectronics,and electrochemical energy storage devices.The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.
基金financially supported by the National Natural Science Foundation of China(No.21604046)the National Young Thousand Talents Program,Shandong Provincial Natural Science Foundation,China(No.ZR2016XJ004)
文摘Synthetic two-dimensional(2 D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2 D structures bring superior properties. Although, from linear to 2 D polymers, the study of these new materials is still in its infancy, they already show potential applications especially in optoelectronics, membranes, energy storage and catalysis, etc. In this review, we summarize the recent progress of the 2 D materials from three respects:(1) Chemistry—different types of polymerization reactions or supramolecular assembly to construct the 2 D networks were described;(2) Preparation methods—surface science, crystal engineering approaches and solution synthesis were introduced;(3) Functionalization and some early applications.
基金This work was supported in part by the German Research Foundation(DFG)through the projects EPIC-Sense(ZI 1283-6-1)EPIDAC(ZI 1283-7-1)the Federal Ministry of Education and Research(BMBF)through project PEARLS(13N14932).
文摘In this paper,we report on polarization combining two-dimensional grating couplers(2D GCs)on amorphous Si:H,fabricated in the backend of line of a photonic BiCMOS platform.The 2D GCs can be used as an interface of a hybrid silicon photonic coherent transmitter,which can be implemented on bulk Si wafers.The fabricated 2D GCs operate in the telecom C-band and show an experimental coupling efficiency of−5 dB with a wafer variation of±1.2 dB.Possibilities for efficiency enhancement and improved performance stability in future design generations are outlined and extension toward O-band devices is also investigated.
基金This work has been sponsored by National Science Foundation under the collaborative research awards#1509272 and#1509197We thank Dr.Christopher Levey from Thayer school of Engineering at Dartmouth College for helpful discussionsWe greatly appreciate the advanced characterization instruments of the Electron Microscope Facility at Dartmouth College and the materials processing instruments of the Micro-System Technology Lab at MIT.
文摘The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applied to free-space two-dimensional (2D) photonic devices because the surface-incident absolute absorption of SLG is limited to 1%–2%. No significant change in either reflectance or transmittance would be observed even if SLG is made transparent upon gating. To achieve significantly enhanced surface-incident optical absorption in SLG in a device structure that also allows gating, here we embed SLG in an optical slot-antenna-coupled cavity (SAC) framework, simultaneously enhancing SLG absorption by up to 20 times and potentially enabling electrical gating of SLG as a step towards tunable 2D photonic surfaces. This framework synergistically integrates near-field enhancement induced by ultrahigh refractive index semimetal slot-antenna with broadband resonances in visible and infrared regimes, ~ 3 times more effective than a vertical cavity structure alone. An example of this framework consists of self-assembled, close-packed Sn nanodots separated by ~ 10 nm nanogaps on a SLG/SiO2/Al stack, which dramatically increases SLG optical absorption to 10%-25% at λ = 600–1,900 nm. The enhanced SLG absorption spectrum can also be controlled by the insulator thickness. For example, SLG embedded in this framework with a 150 nm-thick SiO2 insulating layer displays a distinctive red color in contrast to its surrounding regions without SLG on the same sample under white light illumination. This opens a potential path towards gate-tunable spectral reflectors. Overall, this work initiates a new approach towards tunable 2D photonic surfaces.
文摘Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effects of edges on the band structure and properties of these materials. Here we developed an approach for synthesizing MoS2 nanobelts terminated with vertically aligned edges by sulfurizing hydrothermally synthesized MoO3 nanobelts in the gas phase through a kinetically driven process; we then investigated the electrical and magnetic properties of these metastable materials. These edge-terminated MoS2 nanobelts were found to be metallic and ferromagnetic, and thus dramatically different from the semiconducting and nonmagnetic two-dimensional (2D) and three-dimensional (3D) 2H-MoS2 materials. The transitions in electrical and magnetic properties elucidate the fact that edges can tune the properties of low dimensional materials. The unique structure and properties of this one-dimensional (1D) MoS2 material will enable its applications in electronics, spintronics, and catalysis.
基金the National Natural Science Foundation of China(Nos.51873148,52073206,51633006,and 61704038)the Natural Science Foundation of Tianjin City(No.18JC-YBJC18400)Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000).
文摘Photogating and electrical gating are key physical mechanisms in organic phototransistors(OPTs).However,most OPTs are based on thick and polycrystalline films,which leads to substantially low efficiency of both photogating and electrical gating and thus reduced photoresponse.Herein,high-performance OPTs based on few-layered organic single-crystalline heterojunctions are proposed and the obstacle of thick and polycrystalline films for photodetection is overcome.Because of the molecular scale thickness of the type I organic single-crystalline heterojunctions in OPTs,both photogating and electrical gating are highly efficient.By synergy of efficient photogating and electrical gating,key figures of merit of OPTs reach the highest among those based on planar heterojunctions so far as we know.The production of few-layered organic single-crystalline heterojunctions will provide a new type of advanced materials for various applications.
基金financially supported this work through a Project Grant(No.KAW2020.0033)We acknowledge Myfab at Uppsala University for providing facilities and experimental support+2 种基金Myfab is funded by the Swedish Research Council(No.2019-00207)as a Swedish national research infrastructureThe authors acknowledge the financial support by the Fundamental Research Funds for the Central Universities of China(No.20822041H4077)ÅForsk Foundation.
文摘Assembly of two-dimensional (2D) nanomaterials into well-organized architectures is pivotal for controlling their function and enhancing performance. As a promising class of 2D nanomaterials, MXenes have attracted significant interest for use in wearable electronics due to their unique electrical and mechanical properties. However, facile approaches for fabricating MXenes into macroscopic fibers with controllable structures are limited. In this study, we present a strategy for easily spinning MXene fibers by incorporating polyanions. The introduction of poly(acrylic acid) (PAA) into MXene colloids has been found to alter MXene aggregation behavior, resulting in a reduced concentration threshold for lyotropic liquid crystal phase. This modification also enhances the viscosity and shear sensitivity of MXene colloids. Consequently, we were able to draw continuous fibers directly from the gel of MXene aggregated with PAA. These fibers exhibit homogeneous diameter and high alignment of MXene nanosheets, attributed to the shear-induced long-range order of the liquid crystal phase. Furthermore, we demonstrate proof-of-concept applications of the ordered MXene fibers, including textile-based supercapacitor, sensor and electrical thermal management, highlighting their great potential applied in wearable electronics. This work provides a guideline for processing 2D materials into controllable hierarchical structures by regulating aggregation behavior through the addition of ionic polymers.