The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo val...The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.展开更多
In current research on deflector jet servo valves, the receiver pressure estimated using traditional two-dimensional simulation and theoretical calculation is always lower than the experimental data; therefore, credib...In current research on deflector jet servo valves, the receiver pressure estimated using traditional two-dimensional simulation and theoretical calculation is always lower than the experimental data; therefore, credible information about the flow field in the prestage part of the valve can hardly be obtained. To investigate this issue and understand the internal characteristics of the deflector jet valve, a realistic numerical model is constructed and a three-dimensional simulation carried out that displays a complex flow pattern in the deflector jet structure. Then six phases of the flow pattern are presented, and the defects of the two-dimensional simulation are revealed. Based on the simulation results, it is found that the jet in the deflector has a longer core area and the fluid near the shunt wedge cannot resist the impact of the high-speed fluid. Therefore, two assumptions about the flow distribution are presented by which to construct a more complete theoretical model. The receiver pressure and prestage pressure gain are significantly enhanced in the calculations. Finally, special experiments on the prestage of the servo valve are performed, and the pressure performance of the numerical simulation and the theoretical calculation agree well with the experimental data. Finally, the internal mechanism described by the theoretical and numerical models is verified. From this research,more accurate numerical and theoretical models are proposed by which to figure out the internal characteristics of the deflector jet valve.展开更多
The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluc...The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.展开更多
In view of the complicated structure of the deflector-jet mechanism,a mathematical model based on the turbulent jet flow theory in the deflector-jet amplifier is proposed.Considering the energy transformation and mome...In view of the complicated structure of the deflector-jet mechanism,a mathematical model based on the turbulent jet flow theory in the deflector-jet amplifier is proposed.Considering the energy transformation and momentum variation,an equation of the flow velocity distribution at the key fluid region is established to describe the morphological changes of the fluid when it passes through the deflector and jets into the receiver.Moreover,the process is segmented into four stages.According to the research results,the oil enters the deflector and impinges with the side wall.Then one part of the oil's flow velocity decreases and a high pressure zone is formed by the oil accumulation,the other part of the oil reverses out of the deflector along the side wall.Prior to entering the receiver,the flow is a kind of plane impinging jet.Virtually,the working pressure of the receiver is generated by the impact force,while the high speed fluid flows out of the receiver and forms a violent vortex,which generates negative pressure and causes the oil to be gasified.Compared with the numerical simulation results,the turbulent jet model that can effectively describe the characteristics of the deflector-jet mechanism is accurate.In addition,the calculation results of the prestage pressure characteristic have been verified by experiments.展开更多
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass...Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.展开更多
A novel pilot stage valve called simplified 2D valve, which utilizes bothrotary and linear motions of a single spool, is presented. The rotary motion of the spoolincorporating hydraulic resistance bridge, formed by a ...A novel pilot stage valve called simplified 2D valve, which utilizes bothrotary and linear motions of a single spool, is presented. The rotary motion of the spoolincorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening,is utilized as pilot to actuate linear motion of the spool. A criterion for stability is derivedfrom the linear analysis of the valve. Special experiments are designed to acquire the mechanicalstiffness, the pilot leakage and the step response. It is shown that the sectional size of thespiral groove affects the dynamic response and the stiffness contradictorily and is also verysensitive to the pilot leakage. Therefore, it is necessary to establish a balance between the staticand dynamic characteristics in deciding the structural parameters. Nevertheless, it is possible tosustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage atan acceptable level.展开更多
Performance of giant magnetostrictive material (GMM) is introduced. Principleof work, basic structure and key techniques of giant magnetostrictive actuator (GMA) are analyzed.Its dynamic models of magneto-mechanical c...Performance of giant magnetostrictive material (GMM) is introduced. Principleof work, basic structure and key techniques of giant magnetostrictive actuator (GMA) are analyzed.Its dynamic models of magneto-mechanical coupling are established. The structure and principle ofthe pneumatic servo valve and the micro pipe robot with new homemade GMM are presented. Theexperiment is carried out under typical working conditions. The experiment results show that the GMMpneumatic servo valve has wide pressure control characteristics, good linearity, and fast responsespeed. The movement principles of the GMM robot system are reliably feasible and its maximal movingspeed is about 8 mm/s. It is preferable to the driving frequency of the robot within 100 approx 300Hz.展开更多
Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, t...Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, the factors to fluid characteristics of WHJPSV are addressed, which include diameter combination of jet pipe and receiver pipe, jet pipe nozzle clearance, angle between two jet receiver pipes and deflection angle of the jet pipe. It is concluded from the results that: (i) Structural parameters have great influences on fluid characteristics of WHJPSV, when d1 = d2 = 0.3 mm, α= 45 , b = 0.5 mm, and the simulation exhibits better fluid characteristics; (ii) The magnitude of the recovery pressure and flow velocity increase almost linearly with the deflection angle of jet pipe. The research work in this paper is important for determining and optimizing the structural parameters of the jet pipe and jet receiver. The relevant conclusions could be extended to the study of other water hydraulic servo control components.展开更多
The structure and principle of the GMM actuator and the new nozzle flapper valve with the GMA were presented. Based on the axis-symmetric FEM model of the GMA driving magnetic field was computed. And the field distrib...The structure and principle of the GMM actuator and the new nozzle flapper valve with the GMA were presented. Based on the axis-symmetric FEM model of the GMA driving magnetic field was computed. And the field distribution for different input currents and variant curves of magnetic flux density along the axis were determined by using FEM. Magnetic flux density of the GMM actuator was practically measured under different input currents. The experiment of output displacement and frequency response of the GMM actuator was carried out under typical working conditions. The experiment results show that the GMA for nozzle flapper servo valve has bigger output displacement and quick response speed. And theoretical basis was presented to further introduce the GMA nozzle flapper valve into two stage electro-hydraulic servooo valve.展开更多
The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null positio...The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null position,thereby affecting high-precision control and stability of the servo system.This paper investigates the effects of the clearance structure on leakage behavior at null position of the HESV.A numerical approach was employed to evaluate the effects,and then a mathematical model was established to obtain the variation law of leakage flow rate at null position.The results indicate that the leakage flow rate at null position varies linearly with supply pressure and rounded corner radius,and is nonlinear as a quadratic concave function with annular clearance.The leakage flow rate of the annular clearance and the rounded corner varies with the valve opening in an invariable−nonlinear−linear trend.A test rig system of leakage behavior at null position of the HESV was built to confirm the validity of the numerical model,which agrees well with the conducted experimental study.展开更多
Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate comp...Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate components.The performance of the jet pipe servo valve depends on many parameters.During the developmental stage,it is very difficult to ascertain the function parameters.The steady-state analysis of jet pipe electro-hydraulic servo valve has been made to simulate its fluid characteristics (flowin,flow-out,leakage flow,recovery or load pressure,etc.) by mathematical modeling.Theoretical model was conducted on various affecting parameters on the pressure,the main flow rate of fluid,or leakage flow through the receiver holes.The major parameters studied are jet pipe nozzle diameters,receiver hole diameters,angle between the two centre-lines of receiver hole,nozzle offset,and nozzle stand-of distance.In this paper the research is important to determine and optimize the structural parameters of jet pipe servo valve.Thus,equations of the pressure and flow characteristics are set up and the optimal structural parameters of jet pipe are established.展开更多
A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of th...A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of the proposed piezoelectric electro-hydraulic servo valve. The proposed piezoelectric electro-hydraulic servo valve has ascendant performance compared with conventional ones. But the system is of high nonlinearity and uncertainty, it cannot achieve favorable control performance by conventional control method. To develop an efficient way to control piezoelectric electro-hydraulic servo valve system, a high-precise fuzzy control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with Preisach hysteresis nonlinear model and a feedback loop with high-precise fuzzy control. Experimental results show that the hysteresis loop and the maximum output hysteresis by the PID control method are 4.22% and 2.11 μm, respectively; the hysteresis loop and the maximum output hysteresis by the proposed control method respectively are 0.74% and 0.37 μm, respectively; the maximum tracking error by the PID control method for sine wave reference signal is about 5.02%, the maximum tracking error by the proposed control method for sine wave reference signal is about 0.85%.展开更多
Due to great changing of instantaneous temperature of hydraulic oil of double flapper-nozzle servo valve, thermal deformation between valve core and valve sleeve may result in catching phenomenon of valve core, and th...Due to great changing of instantaneous temperature of hydraulic oil of double flapper-nozzle servo valve, thermal deformation between valve core and valve sleeve may result in catching phenomenon of valve core, and then the reliability of servo valve could be affected seriously. The work focuses on a particular model of double flapper-nozzle servo valve and establishes three dimension couple models of liquid-solid-thermal under extreme operating condition. The transmission route and dissipative mechanism of heat is revealed and thermal deformation behavior of valve core and valve sleeve is researched. A change law of the key fit clearance under the effect of thermal expansion and warp deformation is explored, the source of catching phenomenon of valve core is identified, and then preventive measure and improvement can be proposed. In order to verify the correctness of theoretical analysis, the moving smoothness of deformed valve core and reground valve core under the circumstance of high-temperature hydraulic oil on electrohydraulic servo valve static characteristics test table is compared and tested. The results show that as oil temperature rises, relative deformations between valve core and valve sleeve in different direction at a same cross-section are not equal, and then the key fit clearance is less than the initial value. Relative deformations in the same direction at different axial position are not equal, the deformations of middle and two ends are maximum and minimum values respectively, and then warp deformation of valve core occurs. When oil temperature is higher, the relative deformations between valve core and valve sleeve is larger, the moving smoothness of valve core gets worse, and the catching phenomenon of valve core occurs. Axial deformation of valve sleeve and valve core at different axial position is different, and the opening coefficient and stability of servo valve could be affected, especially the operation circumstance of small opening. The study can provide some guidance for designing double nozzle flapper servo valves.展开更多
Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as constr...Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as construction machinery, heavy equipment, weapon and so forth. The traditional method of modeling and simulation of servo valve is based on block diagram or signal flow, which cannot describe the servo valve system from components level nor be used in modeling and simulation of overall servo systems. In the procedure of traditional method, computational causality must be involved in modeling of servo valve, which is inconvenient to execute modification on components or parameters. Modelica is an object-oriented modeling language which is suited for large, complex, heterogeneous and multi-domain systems. The key features of Modelica are multi-domain, object-oriented and non-causal, which are suitable for modeling of servo valve and make the model readable, reusable, and easy to modify. The simulation results show similar curves with traditional method. This new servo valve modeling and simulation method can provide the engineers a more efficient way to design and optimize a servo valve and an overall servo system.展开更多
Interface engineering in device fabrication is a significant but complicated issue.Although great successes have been achieved by conventional physical in situ or ex situ methods,it still suffers from complicated proc...Interface engineering in device fabrication is a significant but complicated issue.Although great successes have been achieved by conventional physical in situ or ex situ methods,it still suffers from complicated procedures.In this work,we present a facile method for fabricating phthalocyanine(Pc)-based two-dimensional conductive metal–organic framework(MOF)films.Based on PcM-Cu(M=Ni,Cu,H_(2))MOF films,spin valves with a vertical configuration of La_(0.67)Sr_(0.33)MnO_(3)/PcM-Cu MOFs/Co were constructed successfully,and exhibited notably high negative magnetoresistance(MR)up to -22% at 50 K.The penetrated Co atoms coordinated with the dehydrogenated hydroxy groups in the MOFs resulting in an antiferromagnetic layer of the PcM-Cu-Co hybrid structure.Interestingly,a significant exchange bias effect was demonstrated at the PcM-Cu MOF/Co interface,beneficial for the MR behavior.Thus,our present study provides new insights into developing high-performance organic spin valves via de novo molecular design.展开更多
Nowadays,more and more attention has been paid to improve the performance of the nozzle flapper servo valve.As a core part of nozzle flapper servo valve,the armature assembly is affected by electromagnetic force,jet f...Nowadays,more and more attention has been paid to improve the performance of the nozzle flapper servo valve.As a core part of nozzle flapper servo valve,the armature assembly is affected by electromagnetic force,jet force and feedback force at the same time.Due to the complex structure of the pilot stage flow field and the high jet pressure,the prediction of the jet force has always been difficult in modeling the transient motion of the servo valve.Whereupon,a numerical simulation method based on the flow-solid interaction(FSI)is applied to observe the variation of the jet force when the flapper is moving.Different parameters are employed to seek a suitable numerical simulation model which can balance the accuracy and computational cost.By comparing with the experiment results,the effectiveness of numerical simulation method in predicting the variation of the jet force and cavitation is verified.By this numerical simulation model,the distribution of flow field and the force on the flapper predicted by the moving and fixed flapper are compared.The results show that more dynamic details are achieved by the transient simulation.By analyzing the numerical simulation results of different inlet pressures and flapper vibration frequencies,the relationship between the movement of the flapper,the flow field distribution,the jet force and the inlet pressure is established,which provides a theoretical basis for the subsequent modeling of the armature assembly.展开更多
High-speed on-off valves are widey used in PWM electropneumatic servo sys- tems and their characteristics are generally described by their on and off delay time. This paper focuses on establishing the relationships be...High-speed on-off valves are widey used in PWM electropneumatic servo sys- tems and their characteristics are generally described by their on and off delay time. This paper focuses on establishing the relationships between their on-off switching behaviors and their frequency response characteristics. A method is proposed by which the frequency response characteristics of an analog PWM high-speed on-off valve can be calculated for inputs whose periods are certain multiples of the carrier period, based on its switching be- haviors. Thus, a simple and direct describing function for a PWM high-speed on-off valve is established.展开更多
Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in sys...Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.展开更多
Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model referen...Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.展开更多
Transcatheter aortic valve replacement(TAVR) has been validated as a new therapy for patients affected by severe symptomatic aortic stenosis who are not eligible for surgical intervention because of major contraindica...Transcatheter aortic valve replacement(TAVR) has been validated as a new therapy for patients affected by severe symptomatic aortic stenosis who are not eligible for surgical intervention because of major contraindication or high operative risk. Patient selection for TAVR should be based not only on accurate assessment of aortic stenosis morphology, but also on several clinical and functional data. Multi-Imaging modalities should be preferred for assessing the anatomy and the dimensions of the aortic valve and annulus before TAVR. Ultrasounds represent the first line tool in evaluation of this patients giving detailed anatomic description of aortic valve complex and allowing estimating with enough reliability the hemodynamic entity of valvular stenosis. Angiography should be used to assess coronary involvement and plan a revascularization strategy before the implant. Multislice computed tomography play a central role as it can give anatomical details in order to choice the best fitting prosthesis, evaluate the morphology of the access path and detect other relevant comorbidities. Cardiovascular magnetic resonance and positron emission tomography are emergent modality helpful in aortic stenosis evaluation. The aim of this review is to give an overview onTAVR clinical and technical aspects essential for adequate selection.展开更多
基金Supposed by National Natural Science Foundation of China(Grant No.51075348)Hebei Provincial Natural Science Foundation of China(Grant No.E2011203151)Research Fund for Doctoral Program of Higher Education of China(Grant No.20101333110002)
文摘The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.
基金Supported by National Natural Science Foundation of China(Grant No.51775032)Foundation of Key Laboratory of Vehicle AdvancedManufacturing,Measuring and Control Technology,Beijing Jiaotong University,Ministry of Education,China
文摘In current research on deflector jet servo valves, the receiver pressure estimated using traditional two-dimensional simulation and theoretical calculation is always lower than the experimental data; therefore, credible information about the flow field in the prestage part of the valve can hardly be obtained. To investigate this issue and understand the internal characteristics of the deflector jet valve, a realistic numerical model is constructed and a three-dimensional simulation carried out that displays a complex flow pattern in the deflector jet structure. Then six phases of the flow pattern are presented, and the defects of the two-dimensional simulation are revealed. Based on the simulation results, it is found that the jet in the deflector has a longer core area and the fluid near the shunt wedge cannot resist the impact of the high-speed fluid. Therefore, two assumptions about the flow distribution are presented by which to construct a more complete theoretical model. The receiver pressure and prestage pressure gain are significantly enhanced in the calculations. Finally, special experiments on the prestage of the servo valve are performed, and the pressure performance of the numerical simulation and the theoretical calculation agree well with the experimental data. Finally, the internal mechanism described by the theoretical and numerical models is verified. From this research,more accurate numerical and theoretical models are proposed by which to figure out the internal characteristics of the deflector jet valve.
基金Supported by National Natural Science Foundation of China(Grant No.50975055)
文摘The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.
基金Project supported by the International Science and Technology Cooperation Program of China(Grant No.2012DFG71490)
文摘In view of the complicated structure of the deflector-jet mechanism,a mathematical model based on the turbulent jet flow theory in the deflector-jet amplifier is proposed.Considering the energy transformation and momentum variation,an equation of the flow velocity distribution at the key fluid region is established to describe the morphological changes of the fluid when it passes through the deflector and jets into the receiver.Moreover,the process is segmented into four stages.According to the research results,the oil enters the deflector and impinges with the side wall.Then one part of the oil's flow velocity decreases and a high pressure zone is formed by the oil accumulation,the other part of the oil reverses out of the deflector along the side wall.Prior to entering the receiver,the flow is a kind of plane impinging jet.Virtually,the working pressure of the receiver is generated by the impact force,while the high speed fluid flows out of the receiver and forms a violent vortex,which generates negative pressure and causes the oil to be gasified.Compared with the numerical simulation results,the turbulent jet model that can effectively describe the characteristics of the deflector-jet mechanism is accurate.In addition,the calculation results of the prestage pressure characteristic have been verified by experiments.
基金supported by National Natural Science Foundation of China(Grant No.50835001)Research and Innovation Teams Foundation Project of Ministry of Education of China(Grant No.IRT0610)Liaoning Provincial Key Laboratory Foundation Project of China(Grant No.20060132)
文摘Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.
基金This project is supported by National Natural Science Foundation of China (No.50075082)
文摘A novel pilot stage valve called simplified 2D valve, which utilizes bothrotary and linear motions of a single spool, is presented. The rotary motion of the spoolincorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening,is utilized as pilot to actuate linear motion of the spool. A criterion for stability is derivedfrom the linear analysis of the valve. Special experiments are designed to acquire the mechanicalstiffness, the pilot leakage and the step response. It is shown that the sectional size of thespiral groove affects the dynamic response and the stiffness contradictorily and is also verysensitive to the pilot leakage. Therefore, it is necessary to establish a balance between the staticand dynamic characteristics in deciding the structural parameters. Nevertheless, it is possible tosustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage atan acceptable level.
基金This project is supported by National Natural Science Foundation of China (No.59835160).
文摘Performance of giant magnetostrictive material (GMM) is introduced. Principleof work, basic structure and key techniques of giant magnetostrictive actuator (GMA) are analyzed.Its dynamic models of magneto-mechanical coupling are established. The structure and principle ofthe pneumatic servo valve and the micro pipe robot with new homemade GMM are presented. Theexperiment is carried out under typical working conditions. The experiment results show that the GMMpneumatic servo valve has wide pressure control characteristics, good linearity, and fast responsespeed. The movement principles of the GMM robot system are reliably feasible and its maximal movingspeed is about 8 mm/s. It is preferable to the driving frequency of the robot within 100 approx 300Hz.
基金supported by the National Natural Science Foundation of China (Grant Nos.50375056, 50775081, 51075007)the National High-Technology Research and Development Program of China (Grant No.2006AA09Z238)+1 种基金the New Century Excellent Talents in University of State Education Ministry (Grant No.NCET-07-0330)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (Grant No.20090203)
文摘Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, the factors to fluid characteristics of WHJPSV are addressed, which include diameter combination of jet pipe and receiver pipe, jet pipe nozzle clearance, angle between two jet receiver pipes and deflection angle of the jet pipe. It is concluded from the results that: (i) Structural parameters have great influences on fluid characteristics of WHJPSV, when d1 = d2 = 0.3 mm, α= 45 , b = 0.5 mm, and the simulation exhibits better fluid characteristics; (ii) The magnitude of the recovery pressure and flow velocity increase almost linearly with the deflection angle of jet pipe. The research work in this paper is important for determining and optimizing the structural parameters of the jet pipe and jet receiver. The relevant conclusions could be extended to the study of other water hydraulic servo control components.
文摘The structure and principle of the GMM actuator and the new nozzle flapper valve with the GMA were presented. Based on the axis-symmetric FEM model of the GMA driving magnetic field was computed. And the field distribution for different input currents and variant curves of magnetic flux density along the axis were determined by using FEM. Magnetic flux density of the GMM actuator was practically measured under different input currents. The experiment of output displacement and frequency response of the GMM actuator was carried out under typical working conditions. The experiment results show that the GMA for nozzle flapper servo valve has bigger output displacement and quick response speed. And theoretical basis was presented to further introduce the GMA nozzle flapper valve into two stage electro-hydraulic servooo valve.
基金Project(51705164)supported by the National Natural Science Foundation of China。
文摘The high-pressure electro-pneumatic servo valve(HESV)is a core element of the high-pressure pneumatic servo system.The annular clearance and the rounded corner of the spool-sleeve can cause the leakage at null position,thereby affecting high-precision control and stability of the servo system.This paper investigates the effects of the clearance structure on leakage behavior at null position of the HESV.A numerical approach was employed to evaluate the effects,and then a mathematical model was established to obtain the variation law of leakage flow rate at null position.The results indicate that the leakage flow rate at null position varies linearly with supply pressure and rounded corner radius,and is nonlinear as a quadratic concave function with annular clearance.The leakage flow rate of the annular clearance and the rounded corner varies with the valve opening in an invariable−nonlinear−linear trend.A test rig system of leakage behavior at null position of the HESV was built to confirm the validity of the numerical model,which agrees well with the conducted experimental study.
基金National Science and Technology Supporting Program,China(No.2011BAJ02B06)Aeronautical Science Foundation of China(No.20090738003)National Natural Science Foundations of China(No.51175378,No.50775161)
文摘Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate components.The performance of the jet pipe servo valve depends on many parameters.During the developmental stage,it is very difficult to ascertain the function parameters.The steady-state analysis of jet pipe electro-hydraulic servo valve has been made to simulate its fluid characteristics (flowin,flow-out,leakage flow,recovery or load pressure,etc.) by mathematical modeling.Theoretical model was conducted on various affecting parameters on the pressure,the main flow rate of fluid,or leakage flow through the receiver holes.The major parameters studied are jet pipe nozzle diameters,receiver hole diameters,angle between the two centre-lines of receiver hole,nozzle offset,and nozzle stand-of distance.In this paper the research is important to determine and optimize the structural parameters of jet pipe servo valve.Thus,equations of the pressure and flow characteristics are set up and the optimal structural parameters of jet pipe are established.
基金Project(2001AA423270) supported by the National High-Tech Research and Development Program of ChinaProject (2005037185) supported by the Postdoctoral Science Foundation of China
文摘A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of the proposed piezoelectric electro-hydraulic servo valve. The proposed piezoelectric electro-hydraulic servo valve has ascendant performance compared with conventional ones. But the system is of high nonlinearity and uncertainty, it cannot achieve favorable control performance by conventional control method. To develop an efficient way to control piezoelectric electro-hydraulic servo valve system, a high-precise fuzzy control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with Preisach hysteresis nonlinear model and a feedback loop with high-precise fuzzy control. Experimental results show that the hysteresis loop and the maximum output hysteresis by the PID control method are 4.22% and 2.11 μm, respectively; the hysteresis loop and the maximum output hysteresis by the proposed control method respectively are 0.74% and 0.37 μm, respectively; the maximum tracking error by the PID control method for sine wave reference signal is about 5.02%, the maximum tracking error by the proposed control method for sine wave reference signal is about 0.85%.
基金Supported by the National Natural Science Foundation of China(No.51705445)Natural Science Foundation of Hebei Province of China(No.E2016203324)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems
文摘Due to great changing of instantaneous temperature of hydraulic oil of double flapper-nozzle servo valve, thermal deformation between valve core and valve sleeve may result in catching phenomenon of valve core, and then the reliability of servo valve could be affected seriously. The work focuses on a particular model of double flapper-nozzle servo valve and establishes three dimension couple models of liquid-solid-thermal under extreme operating condition. The transmission route and dissipative mechanism of heat is revealed and thermal deformation behavior of valve core and valve sleeve is researched. A change law of the key fit clearance under the effect of thermal expansion and warp deformation is explored, the source of catching phenomenon of valve core is identified, and then preventive measure and improvement can be proposed. In order to verify the correctness of theoretical analysis, the moving smoothness of deformed valve core and reground valve core under the circumstance of high-temperature hydraulic oil on electrohydraulic servo valve static characteristics test table is compared and tested. The results show that as oil temperature rises, relative deformations between valve core and valve sleeve in different direction at a same cross-section are not equal, and then the key fit clearance is less than the initial value. Relative deformations in the same direction at different axial position are not equal, the deformations of middle and two ends are maximum and minimum values respectively, and then warp deformation of valve core occurs. When oil temperature is higher, the relative deformations between valve core and valve sleeve is larger, the moving smoothness of valve core gets worse, and the catching phenomenon of valve core occurs. Axial deformation of valve sleeve and valve core at different axial position is different, and the opening coefficient and stability of servo valve could be affected, especially the operation circumstance of small opening. The study can provide some guidance for designing double nozzle flapper servo valves.
基金supported by the National High Technology Research and Development Foundation of China(2009AA044501)the National Basic Research Program of China (2011CB706502)
文摘Electro-hydraulic servo valve is a typical complicated multi-domain system constituted by mechanical, electric, hydraulic and magnetic components, which is widely used in electro-hydraulic servo systems such as construction machinery, heavy equipment, weapon and so forth. The traditional method of modeling and simulation of servo valve is based on block diagram or signal flow, which cannot describe the servo valve system from components level nor be used in modeling and simulation of overall servo systems. In the procedure of traditional method, computational causality must be involved in modeling of servo valve, which is inconvenient to execute modification on components or parameters. Modelica is an object-oriented modeling language which is suited for large, complex, heterogeneous and multi-domain systems. The key features of Modelica are multi-domain, object-oriented and non-causal, which are suitable for modeling of servo valve and make the model readable, reusable, and easy to modify. The simulation results show similar curves with traditional method. This new servo valve modeling and simulation method can provide the engineers a more efficient way to design and optimize a servo valve and an overall servo system.
基金financially supported by the National Key Research and Development Program of China(grant no.2017YFA0207500)the National Natural Science Foundation of China(grant nos.51973153 and 11774254).
文摘Interface engineering in device fabrication is a significant but complicated issue.Although great successes have been achieved by conventional physical in situ or ex situ methods,it still suffers from complicated procedures.In this work,we present a facile method for fabricating phthalocyanine(Pc)-based two-dimensional conductive metal–organic framework(MOF)films.Based on PcM-Cu(M=Ni,Cu,H_(2))MOF films,spin valves with a vertical configuration of La_(0.67)Sr_(0.33)MnO_(3)/PcM-Cu MOFs/Co were constructed successfully,and exhibited notably high negative magnetoresistance(MR)up to -22% at 50 K.The penetrated Co atoms coordinated with the dehydrogenated hydroxy groups in the MOFs resulting in an antiferromagnetic layer of the PcM-Cu-Co hybrid structure.Interestingly,a significant exchange bias effect was demonstrated at the PcM-Cu MOF/Co interface,beneficial for the MR behavior.Thus,our present study provides new insights into developing high-performance organic spin valves via de novo molecular design.
基金Supported by the National Natural Science Foundation of China(51675119)。
文摘Nowadays,more and more attention has been paid to improve the performance of the nozzle flapper servo valve.As a core part of nozzle flapper servo valve,the armature assembly is affected by electromagnetic force,jet force and feedback force at the same time.Due to the complex structure of the pilot stage flow field and the high jet pressure,the prediction of the jet force has always been difficult in modeling the transient motion of the servo valve.Whereupon,a numerical simulation method based on the flow-solid interaction(FSI)is applied to observe the variation of the jet force when the flapper is moving.Different parameters are employed to seek a suitable numerical simulation model which can balance the accuracy and computational cost.By comparing with the experiment results,the effectiveness of numerical simulation method in predicting the variation of the jet force and cavitation is verified.By this numerical simulation model,the distribution of flow field and the force on the flapper predicted by the moving and fixed flapper are compared.The results show that more dynamic details are achieved by the transient simulation.By analyzing the numerical simulation results of different inlet pressures and flapper vibration frequencies,the relationship between the movement of the flapper,the flow field distribution,the jet force and the inlet pressure is established,which provides a theoretical basis for the subsequent modeling of the armature assembly.
文摘High-speed on-off valves are widey used in PWM electropneumatic servo sys- tems and their characteristics are generally described by their on and off delay time. This paper focuses on establishing the relationships between their on-off switching behaviors and their frequency response characteristics. A method is proposed by which the frequency response characteristics of an analog PWM high-speed on-off valve can be calculated for inputs whose periods are certain multiples of the carrier period, based on its switching be- haviors. Thus, a simple and direct describing function for a PWM high-speed on-off valve is established.
文摘Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.
文摘Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.
文摘Transcatheter aortic valve replacement(TAVR) has been validated as a new therapy for patients affected by severe symptomatic aortic stenosis who are not eligible for surgical intervention because of major contraindication or high operative risk. Patient selection for TAVR should be based not only on accurate assessment of aortic stenosis morphology, but also on several clinical and functional data. Multi-Imaging modalities should be preferred for assessing the anatomy and the dimensions of the aortic valve and annulus before TAVR. Ultrasounds represent the first line tool in evaluation of this patients giving detailed anatomic description of aortic valve complex and allowing estimating with enough reliability the hemodynamic entity of valvular stenosis. Angiography should be used to assess coronary involvement and plan a revascularization strategy before the implant. Multislice computed tomography play a central role as it can give anatomical details in order to choice the best fitting prosthesis, evaluate the morphology of the access path and detect other relevant comorbidities. Cardiovascular magnetic resonance and positron emission tomography are emergent modality helpful in aortic stenosis evaluation. The aim of this review is to give an overview onTAVR clinical and technical aspects essential for adequate selection.