The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolym...The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolymer. Diffraction efficiency of a single grating is up to 78% in Bragg's condition, then a two-dimensional non-spatial filter, which consists of two volume Bragg gratings and a half-wave plate, enables the laser beam filtered in two dimensions with the diffraction efficiency of 54%. The Bragg's condition and effect of polarisation on performances of the two-dimension filter are also discussed.展开更多
We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gas...We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.展开更多
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between...Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.展开更多
In this work,we introduce a kind of new structured radial grating,which is named the even-type sinusoidal amplitude radial(ETASR)grating.Based on diffraction theory and the principle of stationary phase,a comprehensiv...In this work,we introduce a kind of new structured radial grating,which is named the even-type sinusoidal amplitude radial(ETASR)grating.Based on diffraction theory and the principle of stationary phase,a comprehensive theoretical investigation on the diffraction patterns of ETASR gratings is conducted.Theoretical results show that novel carpet beams with beautiful optical structures and distinctive characteristics have been constructed on the basics of the ETASR grating.Their diffraction patterns are independent of propagation distance,that is,the new carpet beams have diffraction-free propagating characteristics.The non-diffracting carpet beams are divided into two types by beam characteristics:non-diffracting integer-order and half-integer-order carpet beams.Subsequently,we experimentally generate these carpet beams using the ETASR grating.Finally,their particularly interesting optical morphology and features are explored through numerical simulations and experiments.展开更多
The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating s...The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.展开更多
A composite one-dimensional (1D) Ag sinusoidal nanograting aiming at label-free surface enhanced Raman scattering (SERS) detection of TNT with robust and reproducible enhancements is discussed. 1D periodic sinusoi...A composite one-dimensional (1D) Ag sinusoidal nanograting aiming at label-free surface enhanced Raman scattering (SERS) detection of TNT with robust and reproducible enhancements is discussed. 1D periodic sinusoidal SiO2 grating followed by Ag evaporation is proposed for the creation of reproducible and effective SERS substrate based on surface plasmon polaritons (SPPs). The optimal structure of 1D sinusoidal nanograting and its long-range SERS effect are analyzed by using the finite difference time domain (FDTD). Simulation SERS enhancement factor (EF) can be 5 orders of magnitude as possible. This SERS substrate is prepared by the interference photolithography technology, its SERS performance is tested by Rh6G detection experiments, and the actual test EF is about 10. The label-free SERS detection capacity of TNT is demonstrated in the experiment.展开更多
We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, perfor...We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, performance characteristics,and fabrication tolerance of the two-dimensional grating coupler are thoroughly analyzed utilizing the three-dimensional finite-difference time-domain method. Experimentally,-7.2 d B of coupling efficiency is achieved with 1 d B bandwidth of64 nm. The polarization-dependent loss is about 0.4 d B around 1550 nm. Our work provides new polarization multiplexing approaches for the lithium niobate on insulator platform, paving the way for critical applications such as high-speed polarization multiplexed electro-optical modulators.展开更多
A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a ...A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a TTD unit based on the same compact FGP, one tunable laser for elevation beam steering, and a controlled wavelength converter for azimuth beam steering. A planar PAA using such 2D optical TTD unit has advantages such as compactness, low bandwidth requirement for tunable laser sources, and potential for large-scale system implementations. The proof-of-concept experiment results demonstrate the feasibility of the proposed scheme.展开更多
The transmission sinusoidal grating(TSG) shows a different diffraction pattern with conventional black-white transmission grating(BWTG), which can focus the diffraction energy on a higher order and has been widely use...The transmission sinusoidal grating(TSG) shows a different diffraction pattern with conventional black-white transmission grating(BWTG), which can focus the diffraction energy on a higher order and has been widely used in the spectrum instruments. According to the description of the scalar diffraction theory, the numerical simulation for diffraction properties of the TSG has been studied for years. However, the fabrication of the TSG is difficult and seldom reported. In this article, a TSG is designed and an approach of the X-ray LIGA process is used to fabricate the TSG and the device can obtain the brightest diffraction peaks at the ±1 order with the zero-order diffraction peak unobvious on the background for a certain wavelength of the incident light.展开更多
基金supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (Grant No. 10676038)
文摘The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolymer. Diffraction efficiency of a single grating is up to 78% in Bragg's condition, then a two-dimensional non-spatial filter, which consists of two volume Bragg gratings and a half-wave plate, enables the laser beam filtered in two dimensions with the diffraction efficiency of 54%. The Bragg's condition and effect of polarisation on performances of the two-dimension filter are also discussed.
基金Supported by the State Key Development Program for Basic Research of China under Grant No 2016YFA0301501the National Natural Science Foundation of China under Grant Nos 11504328,61475007,11334001 and 91336103
文摘We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022)。
文摘Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.
基金supported by the National Natural Science Foundation of China(Nos.11974314 and 11674288).
文摘In this work,we introduce a kind of new structured radial grating,which is named the even-type sinusoidal amplitude radial(ETASR)grating.Based on diffraction theory and the principle of stationary phase,a comprehensive theoretical investigation on the diffraction patterns of ETASR gratings is conducted.Theoretical results show that novel carpet beams with beautiful optical structures and distinctive characteristics have been constructed on the basics of the ETASR grating.Their diffraction patterns are independent of propagation distance,that is,the new carpet beams have diffraction-free propagating characteristics.The non-diffracting carpet beams are divided into two types by beam characteristics:non-diffracting integer-order and half-integer-order carpet beams.Subsequently,we experimentally generate these carpet beams using the ETASR grating.Finally,their particularly interesting optical morphology and features are explored through numerical simulations and experiments.
基金Supported by Natural Science Foundation of Hebei Province under Grant No.A2010000004the National Natural Science Foundation of China under Grant Nos.10704022 and 60736042the Key Subject Construction Project of Hebei Province University
文摘The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.
文摘A composite one-dimensional (1D) Ag sinusoidal nanograting aiming at label-free surface enhanced Raman scattering (SERS) detection of TNT with robust and reproducible enhancements is discussed. 1D periodic sinusoidal SiO2 grating followed by Ag evaporation is proposed for the creation of reproducible and effective SERS substrate based on surface plasmon polaritons (SPPs). The optimal structure of 1D sinusoidal nanograting and its long-range SERS effect are analyzed by using the finite difference time domain (FDTD). Simulation SERS enhancement factor (EF) can be 5 orders of magnitude as possible. This SERS substrate is prepared by the interference photolithography technology, its SERS performance is tested by Rh6G detection experiments, and the actual test EF is about 10. The label-free SERS detection capacity of TNT is demonstrated in the experiment.
基金supported in part by the National Key R&D Program of China(Nos.2019YFB1803900 and 2019YFA0705000)the National Natural Science Foundation of China(Nos.11690031,11761131001,and 11904061)+6 种基金the Key R&D Program of Guangdong Province(No.2018B030329001)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X121)the Project of Key Laboratory of Radar Imaging and Microwave Photonics,Ministry of Education(No.RIMP2019003)the Innovation Fund of WNLO(No.2018WNLOKF010),the Guangzhou Science and Technology Program(No.201707010096)the Guangxi Youth and Middle Aged Ability Promotion Project(No.2019KY0126)the BaGui Scholar Programof Guangxi Province(No.02304002022C)the China Postdoctoral Science Foundation(No.2020M673554XB).
文摘We propose and demonstrate a polarization diversity two-dimensional grating coupler based on the lithium niobate on insulator platform, for the first time, to the best of our knowledge. The optimization design, performance characteristics,and fabrication tolerance of the two-dimensional grating coupler are thoroughly analyzed utilizing the three-dimensional finite-difference time-domain method. Experimentally,-7.2 d B of coupling efficiency is achieved with 1 d B bandwidth of64 nm. The polarization-dependent loss is about 0.4 d B around 1550 nm. Our work provides new polarization multiplexing approaches for the lithium niobate on insulator platform, paving the way for critical applications such as high-speed polarization multiplexed electro-optical modulators.
基金supported by the National "973" Project of China(Nos.2010CB328202,2010CB328204,and 2012CB315604)the National Natural Science Foundation of China(Nos.61271191 and 61001124)+3 种基金the National "863" Project of China(No.2012AA011302)the Program for New Century Excellent Talents in University(No.NCET-12-0793)the Beijing Nova Program(No.2011065)the Fundamental Research Funds for the Central Universities
文摘A two-dimensional(2D) optical true-time delay(TTD) beam-forming system using a compact fiber grating prism(FGP) for a planar phased array antenna(PAA) is proposed. The optical beam-forming system mainly consists of a TTD unit based on the same compact FGP, one tunable laser for elevation beam steering, and a controlled wavelength converter for azimuth beam steering. A planar PAA using such 2D optical TTD unit has advantages such as compactness, low bandwidth requirement for tunable laser sources, and potential for large-scale system implementations. The proof-of-concept experiment results demonstrate the feasibility of the proposed scheme.
基金supported by National Natural Science Foundation of China(No.11405200)
文摘The transmission sinusoidal grating(TSG) shows a different diffraction pattern with conventional black-white transmission grating(BWTG), which can focus the diffraction energy on a higher order and has been widely used in the spectrum instruments. According to the description of the scalar diffraction theory, the numerical simulation for diffraction properties of the TSG has been studied for years. However, the fabrication of the TSG is difficult and seldom reported. In this article, a TSG is designed and an approach of the X-ray LIGA process is used to fabricate the TSG and the device can obtain the brightest diffraction peaks at the ±1 order with the zero-order diffraction peak unobvious on the background for a certain wavelength of the incident light.
基金Natural Science Foundation of Zhejiang Province(Y1110125)Program for Innovative Research Team,Zhejiang Normal University,Jinhua,Zhejiang Province,P.R.China