This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter mod...This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter model,STAP performance is then analyzed from the perspective of covariance matrix tapering(CMT).For STAP performance degradation due to array rotation,a determinate compensation method is proposed based on the CMT method.Numerical examples are provided to verify the analysis and the proposed compensation method.展开更多
A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon a...A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon approach . It is of practical use for its small computational load. This approach possesses the ideal performance in the area of main-lobe clutter . In addition, the approach which is added by some auxiliary beams in the area of main-lobe clutter has also been discussed.展开更多
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi...In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.展开更多
This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant...This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.展开更多
For the slowly changed environment-range-dependent non-homogeneity, a new statistical space-time adaptive processing algorithm is proposed, which uses the statistical methods, such as Bayes or likelihood criterion to ...For the slowly changed environment-range-dependent non-homogeneity, a new statistical space-time adaptive processing algorithm is proposed, which uses the statistical methods, such as Bayes or likelihood criterion to estimate the approximative covariance matrix in the non-homogeneous condition. According to the statistical characteristics of the space-time snapshot data, via defining the aggregate snapshot data and corresponding events, the conditional probability of the space-time snapshot data which is the effective training data is given, then the weighting coefficients are obtained for the weighting method. The theory analysis indicates that the statistical methods of the Bayes and likelihood criterion for covariance matrix estimation are more reasonable than other methods that estimate the covariance matrix with the use of training data except the detected outliers. The last simulations attest that the proposed algorithms can estimate the covariance in the non-homogeneous condition exactly and have favorable characteristics.展开更多
Two-dimensional(2D)supports confined single-atom catalysts(2D SACs)with unique geometric and electronic structures have been attractive candidates in different catalytic applications,such as energy conversion and stor...Two-dimensional(2D)supports confined single-atom catalysts(2D SACs)with unique geometric and electronic structures have been attractive candidates in different catalytic applications,such as energy conversion and storage,value-added chemical synthesis and environmental remediation.However,their environmental appli-cations lack of a comprehensive summary and in-depth discussion.In this review,recent progresses in synthesis routes and advanced characterization techniques for 2D SACs are introduced,and a comprehensive discussion on their applications in environmental remediation is presented.Generally,2D SACs can be effective in catalytic elimination of aqueous and gaseous pollutants via radical or non-radical routes and transformation of toxic pollutants into less poisonous species or highly value-added products,opening a new horizon for the contami-nant treatment.In addition,in-depth reaction mechanisms and potential pathways are systematically discussed,and the relationship between the structure-performance is highlighted.Finally,several critical challenges within this field are presented,and possible directions for further explorations of 2D SACs in environmental remediation are suggested.Although the research of 2D SACs in the environmental application is still in its infancy,this review will provide a timely summary on the emerging field,and would stimulate tremendous interest for designing more attractive 2D SACs and promoting their wide applications.展开更多
Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model ...Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.展开更多
D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated si...D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization methods)have been proposed successively,but most are limited to numerical simulations.This study focused on the applicability of different inversion methods for NMR logging data of various acquisition sequences,from which the optimal inversion method was selected based on the comparative analysis.First,the two-dimensional NMR logging principle was studied.Then,these inversion methods were studied in detail,and the precision and computational efficiency of CPMG and diffusion editing(DE)sequences obtained from oil-water and gas-water models were compared,respectively.The inversion results and calculation time of truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization were compared and analyzed through numerical simulations.The inversion method was optimized to process SP mode logging data from the MR Scanner instrument.The results showed that the TIST-regularization and LM-norm smoothing methods were more accurate for the CPMG and DE sequence echo trains of the oil-water and gas-water models.However,the LM-norm smoothing method was less time-consuming,making it more suitable for logging data processing.A case study in well A25 showed that the processing results by the LM-norm smoothing method were consistent with GEOLOG software.This demonstrates that the LM-norm smoothing method is applicable in practical NMR logging processing.展开更多
Based upon the diagonal loading technique and the structure of the space-time adaptive processors, a novel anti-jamming method of satellite navigation is proposed. According to matrix in- verse theorem, the range of t...Based upon the diagonal loading technique and the structure of the space-time adaptive processors, a novel anti-jamming method of satellite navigation is proposed. According to matrix in- verse theorem, the range of the diagonal loading values for space-time adaptive wideband signal pro- cessing structure is deduced, and the optimum equation of diagonal loading beam forming algorithm of space-time structure is obtained. Then, by the analysis of two-dimensional oriented vector in di- rection of the perturbation interference, the wideband interference covariance matrix obtained in the weights training period is modified. Finally, the optimum weight of multi-linear constrained space- time adaptive beam-forming alogrithm is derived for anti-interference filter processing. The new method effectively widens the null steering beams tion results prove the robustness of the proposed when discrepancy happens. The computer simula- method.展开更多
The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of a...The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.展开更多
Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the...Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams.展开更多
River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal pro...River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.展开更多
Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading condition...Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading conditions are available at the receiver. However, increasing the number of transmit antennas increases the required training interval and reduces the available time in which data may be transmitted before the fading coefficients change. In this paper, a vertical layered space-time code is proposed. By applying the subspace method to the layered space-time code, the symbols can be detected without training symbols and channel estimates at the transmitter or the receiver. Monte Carlo simulations show that performance can approach that of the detection method with the knowledge of the channel.展开更多
Quadratic programming models for integrated space-time interference suppression in CDMA systems are proposed in this paper. The models integrate the advantages of smart antenna and RAKE receiver, mitigate multiuser ac...Quadratic programming models for integrated space-time interference suppression in CDMA systems are proposed in this paper. The models integrate the advantages of smart antenna and RAKE receiver, mitigate multiuser access interference (MAI) and interchip interference (ICI),and combine multipath components. The zero-forcing conditions are derived. Neural network implementation of the models is also studied.展开更多
The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-...The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-time multiuser receiver presented in this paper combines 2D-RAKE with parallel interference cancellation (PIC), and the improved parallel interference cancellation methods are given. A novel space-time multiuser detection scheme, 2DRAKE-GPPIC is proposed. This scheme employs smart antenna to suppress unexpected DOA (Direction Of Arrival) signal, uses RAKE receiver to combine different delays of expected signal, and utilizes grouped partial parallel interference cancellation (GPPIC) algorithm to suppress further the interference signal in the main lobe of array antennas. The simulation results reveal that the scheme of space-time multiuser detection presented in this paper has better performance for WCDMA system.展开更多
The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e...The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly.展开更多
In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test res...In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test results. In order to improve the effect we can measure with Digital Image Processing Techniques. A piece of sample is scanned into computer and changed into a digital image, which is processed with media filtering. To acquire the power spectrum, the image in the spatial domain is converted into the frequency domain. Picking up the characteristic points describing the stitch density and the stitch length separately in the power spectra and reconstructing them, the values of the stitch density and the stitch length could be calculated. When measuring the stitch length, we should establish a geometric model of the stitch based en the digital image processing, which provides a method to transform the stitch length in the two-dimensien space into the three-dimensien space and to measure the value of the stitch length more accurately. This method also provides a new way to measure the stitch length without damaging the fabric.展开更多
Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simul...Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.展开更多
A new equivalent formulation of the joint domain space-time optimum processor for airborne phased array radar application is derived. Then a new framework of space-time adaptive processing (STAP) for airborne radar sy...A new equivalent formulation of the joint domain space-time optimum processor for airborne phased array radar application is derived. Then a new framework of space-time adaptive processing (STAP) for airborne radar systems which includes most of suboptimum algorithms in the literature is proposed. The performance of two typical rank-reduced time-space joint-domain processors based on Doppler pre-filtering is analyzed in detail based on the proposed framework.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
基金supported by the National Natural Science Foundation of China(60901056)
文摘This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter model,STAP performance is then analyzed from the perspective of covariance matrix tapering(CMT).For STAP performance degradation due to array rotation,a determinate compensation method is proposed based on the CMT method.Numerical examples are provided to verify the analysis and the proposed compensation method.
基金National Nature Science FoundationNational Deferise Research Funds
文摘A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon approach . It is of practical use for its small computational load. This approach possesses the ideal performance in the area of main-lobe clutter . In addition, the approach which is added by some auxiliary beams in the area of main-lobe clutter has also been discussed.
文摘In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.
基金the Innovation Foundation of NUDT forPh.D.graduates.
文摘This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.
基金Supported by the National Post-doctor Fundation (No. 20090451251) the Shaanxi Industry Surmount Foundation (2009K08-31) of China
文摘For the slowly changed environment-range-dependent non-homogeneity, a new statistical space-time adaptive processing algorithm is proposed, which uses the statistical methods, such as Bayes or likelihood criterion to estimate the approximative covariance matrix in the non-homogeneous condition. According to the statistical characteristics of the space-time snapshot data, via defining the aggregate snapshot data and corresponding events, the conditional probability of the space-time snapshot data which is the effective training data is given, then the weighting coefficients are obtained for the weighting method. The theory analysis indicates that the statistical methods of the Bayes and likelihood criterion for covariance matrix estimation are more reasonable than other methods that estimate the covariance matrix with the use of training data except the detected outliers. The last simulations attest that the proposed algorithms can estimate the covariance in the non-homogeneous condition exactly and have favorable characteristics.
基金This work was financially supported by the National Natural Science Foundation of China(51602133,51876093)China MOST(2018YFE0183600).
文摘Two-dimensional(2D)supports confined single-atom catalysts(2D SACs)with unique geometric and electronic structures have been attractive candidates in different catalytic applications,such as energy conversion and storage,value-added chemical synthesis and environmental remediation.However,their environmental appli-cations lack of a comprehensive summary and in-depth discussion.In this review,recent progresses in synthesis routes and advanced characterization techniques for 2D SACs are introduced,and a comprehensive discussion on their applications in environmental remediation is presented.Generally,2D SACs can be effective in catalytic elimination of aqueous and gaseous pollutants via radical or non-radical routes and transformation of toxic pollutants into less poisonous species or highly value-added products,opening a new horizon for the contami-nant treatment.In addition,in-depth reaction mechanisms and potential pathways are systematically discussed,and the relationship between the structure-performance is highlighted.Finally,several critical challenges within this field are presented,and possible directions for further explorations of 2D SACs in environmental remediation are suggested.Although the research of 2D SACs in the environmental application is still in its infancy,this review will provide a timely summary on the emerging field,and would stimulate tremendous interest for designing more attractive 2D SACs and promoting their wide applications.
基金Supported in part by the State Key Development Program for Basic Research of China(2012CB720505)the National Natural Science Foundation of China(61174105,60874049)
文摘Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.
基金sponsored by the National Natural Science Foundation of China(Nos.42174149,41774144)the National Major Projects(No.2016ZX05014-001).
文摘D-T_(2)two-dimensional nuclear magnetic resonance(2D NMR)logging technology can distinguish pore fluid types intuitively,and it is widely used in oil and gas exploration.Many 2D NMR inversion methods(e.g.,truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization methods)have been proposed successively,but most are limited to numerical simulations.This study focused on the applicability of different inversion methods for NMR logging data of various acquisition sequences,from which the optimal inversion method was selected based on the comparative analysis.First,the two-dimensional NMR logging principle was studied.Then,these inversion methods were studied in detail,and the precision and computational efficiency of CPMG and diffusion editing(DE)sequences obtained from oil-water and gas-water models were compared,respectively.The inversion results and calculation time of truncated singular value decomposition(TSVD),Butler-Reds-Dawson(BRD),LM-norm smoothing,and TIST-L1 regularization were compared and analyzed through numerical simulations.The inversion method was optimized to process SP mode logging data from the MR Scanner instrument.The results showed that the TIST-regularization and LM-norm smoothing methods were more accurate for the CPMG and DE sequence echo trains of the oil-water and gas-water models.However,the LM-norm smoothing method was less time-consuming,making it more suitable for logging data processing.A case study in well A25 showed that the processing results by the LM-norm smoothing method were consistent with GEOLOG software.This demonstrates that the LM-norm smoothing method is applicable in practical NMR logging processing.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2011AA1569)
文摘Based upon the diagonal loading technique and the structure of the space-time adaptive processors, a novel anti-jamming method of satellite navigation is proposed. According to matrix in- verse theorem, the range of the diagonal loading values for space-time adaptive wideband signal pro- cessing structure is deduced, and the optimum equation of diagonal loading beam forming algorithm of space-time structure is obtained. Then, by the analysis of two-dimensional oriented vector in di- rection of the perturbation interference, the wideband interference covariance matrix obtained in the weights training period is modified. Finally, the optimum weight of multi-linear constrained space- time adaptive beam-forming alogrithm is derived for anti-interference filter processing. The new method effectively widens the null steering beams tion results prove the robustness of the proposed when discrepancy happens. The computer simula- method.
文摘The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.
文摘Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams.
基金supported by the National Natural Science Foundation of China(Grant No.50579030)
文摘River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.
基金Partially supported by the National Natural Sciences Foundation (No.69872029) and the Research Fund for Doctoral Program of Higher Education (No.1999069808) of China
文摘Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading conditions are available at the receiver. However, increasing the number of transmit antennas increases the required training interval and reduces the available time in which data may be transmitted before the fading coefficients change. In this paper, a vertical layered space-time code is proposed. By applying the subspace method to the layered space-time code, the symbols can be detected without training symbols and channel estimates at the transmitter or the receiver. Monte Carlo simulations show that performance can approach that of the detection method with the knowledge of the channel.
基金Supported by the National Natural Science Foundation of China under Grant 69882004 and MPT Project
文摘Quadratic programming models for integrated space-time interference suppression in CDMA systems are proposed in this paper. The models integrate the advantages of smart antenna and RAKE receiver, mitigate multiuser access interference (MAI) and interchip interference (ICI),and combine multipath components. The zero-forcing conditions are derived. Neural network implementation of the models is also studied.
文摘The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-time multiuser receiver presented in this paper combines 2D-RAKE with parallel interference cancellation (PIC), and the improved parallel interference cancellation methods are given. A novel space-time multiuser detection scheme, 2DRAKE-GPPIC is proposed. This scheme employs smart antenna to suppress unexpected DOA (Direction Of Arrival) signal, uses RAKE receiver to combine different delays of expected signal, and utilizes grouped partial parallel interference cancellation (GPPIC) algorithm to suppress further the interference signal in the main lobe of array antennas. The simulation results reveal that the scheme of space-time multiuser detection presented in this paper has better performance for WCDMA system.
基金supported by National Natural Science Foundation of China under Grant No.60872065Open Foundation of State Key Laboratory for Novel Software Technology at Nanjing University under Grant No.KFKT2010B17
文摘The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly.
文摘In the knitting industry the measurements of the stitch density and the stitch length are usually done manually, which may lead to lower efficiency and less definition and also bring subjective ideas into the test results. In order to improve the effect we can measure with Digital Image Processing Techniques. A piece of sample is scanned into computer and changed into a digital image, which is processed with media filtering. To acquire the power spectrum, the image in the spatial domain is converted into the frequency domain. Picking up the characteristic points describing the stitch density and the stitch length separately in the power spectra and reconstructing them, the values of the stitch density and the stitch length could be calculated. When measuring the stitch length, we should establish a geometric model of the stitch based en the digital image processing, which provides a method to transform the stitch length in the two-dimensien space into the three-dimensien space and to measure the value of the stitch length more accurately. This method also provides a new way to measure the stitch length without damaging the fabric.
基金supported by College of William and Mary,Virginia Institute of Marine Science for the study environment
文摘Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.
基金Project supported by the Foundation of Key Laboratory for Radar Signal Processing.
文摘A new equivalent formulation of the joint domain space-time optimum processor for airborne phased array radar application is derived. Then a new framework of space-time adaptive processing (STAP) for airborne radar systems which includes most of suboptimum algorithms in the literature is proposed. The performance of two typical rank-reduced time-space joint-domain processors based on Doppler pre-filtering is analyzed in detail based on the proposed framework.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.