We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability...We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability.展开更多
We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bif...We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.展开更多
We present a class of two-dimensional memristive maps with a cosine memristor. The memristive maps do not have any fixed points, so they belong to the category of nonlinear maps with hidden attractors. The rich dynami...We present a class of two-dimensional memristive maps with a cosine memristor. The memristive maps do not have any fixed points, so they belong to the category of nonlinear maps with hidden attractors. The rich dynamical behaviors of these maps are studied and investigated using different numerical tools, including phase portrait, basins of attraction,bifurcation diagram, and Lyapunov exponents. The two-parameter bifurcation analysis of the memristive map is carried out to reveal the bifurcation mechanism of its dynamical behaviors. Based on our extensive simulation studies, the proposed memristive maps can produce hidden periodic, chaotic, and hyper-chaotic attractors, exhibiting extremely hidden multistability, namely the coexistence of infinite hidden attractors, which was rarely observed in memristive maps. Potentially,this work can be used for some real applications in secure communication, such as data and image encryptions.展开更多
This paper studies a new class of two-dimensional rational maps exhibiting self-excited and hidden attractors. The mathematical model of these maps is firstly formulated by introducing a rational term. The analysis of...This paper studies a new class of two-dimensional rational maps exhibiting self-excited and hidden attractors. The mathematical model of these maps is firstly formulated by introducing a rational term. The analysis of existence and stability of the fixed points in these maps suggests that there are four types of fixed points, i.e., no fixed point, one single fixed point, two fixed points and a line of fixed points. To investigate the complex dynamics of these rational maps with different types of fixed points, numerical analysis tools, such as time histories, phase portraits, basins of attraction, Lyapunov exponent spectrum, Lyapunov(Kaplan–Yorke) dimension and bifurcation diagrams, are employed. Our extensive numerical simulations identify both self-excited and hidden attractors, which were rarely reported in the literature. Therefore, the multi-stability of these maps, especially the hidden one, is further explored in the present work.展开更多
Perturbation imposed on a chaos system is an effective way to maintain its chaotic features. A novel parameter perturbation method for the tent map based on the Lyapunov exponent is proposed in this paper. The pseudo-...Perturbation imposed on a chaos system is an effective way to maintain its chaotic features. A novel parameter perturbation method for the tent map based on the Lyapunov exponent is proposed in this paper. The pseudo-random sequence generated by the tent map is sent to another chaos function - the Chebyshev map for the post processing. If the output value of the Chebyshev map falls into a certain range, it will be sent back to replace the parameter of the tent map. As a result, the parameter of the tent map keeps changing dynamically. The statistical analysis and experimental results prove that the disturbed tent map has a highly random distribution and achieves good cryptographic properties of a pseudo-random sequence. As a result, it weakens the phenomenon of strong correlation caused by the finite precision and effectively compensates for the digital chaos system dynamics degradation.展开更多
Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simul...Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simulations and experiments built with commercially available IC's for the circuits have demonstrated the validity of the circuit designs. The experiment results also indicate that the proposed circuits are integrable by a standard CMOS technology. The implementations are useful for studies and applications of chaos.展开更多
A new algorithm for a novel hash function, based on chaotic tent map with changeable parameter, is proposed and analyzed. The one dimensional and piecewise tent map with changeable parameters decided by the position i...A new algorithm for a novel hash function, based on chaotic tent map with changeable parameter, is proposed and analyzed. The one dimensional and piecewise tent map with changeable parameters decided by the position index of blocked messages is chosen, and blocked massages translated into ASCII code values are employed as the iteration time of the chaotic tent map. The final 128-bit hash value is generated by logical XOR operation on intermediate hash values. Theoretical analysis and computer simulation indicate that the proposed algorithm can satisfy the performance requirements of hash function.展开更多
基金National Natural Science Foundation of China(Grant Nos.11672257,11632008,11772306,and 11972173)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20161314)+1 种基金the 5th 333 High-level Personnel Training Project of Jiangsu Province of China(Grant No.BRA2018324)the Excellent Scientific and Technological Innovation Team of Jiangsu University.
文摘We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11972173 and 12172340)。
文摘We present a class of two-dimensional memristive maps with a cosine memristor. The memristive maps do not have any fixed points, so they belong to the category of nonlinear maps with hidden attractors. The rich dynamical behaviors of these maps are studied and investigated using different numerical tools, including phase portrait, basins of attraction,bifurcation diagram, and Lyapunov exponents. The two-parameter bifurcation analysis of the memristive map is carried out to reveal the bifurcation mechanism of its dynamical behaviors. Based on our extensive simulation studies, the proposed memristive maps can produce hidden periodic, chaotic, and hyper-chaotic attractors, exhibiting extremely hidden multistability, namely the coexistence of infinite hidden attractors, which was rarely observed in memristive maps. Potentially,this work can be used for some real applications in secure communication, such as data and image encryptions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11672257, 11772306, 11972173, and 12172340)the 5th 333 High-level Personnel Training Project of Jiangsu Province of China (Grant No. BRA2018324)。
文摘This paper studies a new class of two-dimensional rational maps exhibiting self-excited and hidden attractors. The mathematical model of these maps is firstly formulated by introducing a rational term. The analysis of existence and stability of the fixed points in these maps suggests that there are four types of fixed points, i.e., no fixed point, one single fixed point, two fixed points and a line of fixed points. To investigate the complex dynamics of these rational maps with different types of fixed points, numerical analysis tools, such as time histories, phase portraits, basins of attraction, Lyapunov exponent spectrum, Lyapunov(Kaplan–Yorke) dimension and bifurcation diagrams, are employed. Our extensive numerical simulations identify both self-excited and hidden attractors, which were rarely reported in the literature. Therefore, the multi-stability of these maps, especially the hidden one, is further explored in the present work.
基金Project supported by the Guangxi Provincial Natural Science Foundation,China(Grant No.2014GXNSFBA118271)the Research Project of Guangxi University,China(Grant No.ZD2014022)+4 种基金the Fund from Guangxi Provincial Key Laboratory of Multi-source Information Mining&Security,China(Grant No.MIMS14-04)the Fund from the Guangxi Provincial Key Laboratory of Wireless Wideband Communication&Signal Processing,China(Grant No.GXKL0614205)the Education Development Foundation and the Doctoral Research Foundation of Guangxi Normal Universitythe State Scholarship Fund of China Scholarship Council(Grant No.[2014]3012)the Innovation Project of Guangxi Graduate Education,China(Grant No.YCSZ2015102)
文摘Perturbation imposed on a chaos system is an effective way to maintain its chaotic features. A novel parameter perturbation method for the tent map based on the Lyapunov exponent is proposed in this paper. The pseudo-random sequence generated by the tent map is sent to another chaos function - the Chebyshev map for the post processing. If the output value of the Chebyshev map falls into a certain range, it will be sent back to replace the parameter of the tent map. As a result, the parameter of the tent map keeps changing dynamically. The statistical analysis and experimental results prove that the disturbed tent map has a highly random distribution and achieves good cryptographic properties of a pseudo-random sequence. As a result, it weakens the phenomenon of strong correlation caused by the finite precision and effectively compensates for the digital chaos system dynamics degradation.
基金Supported by the National Natural Science Foundation of China (No.60372004) and Natural Science Foundation of Guangdong Province (No.20820)
文摘Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simulations and experiments built with commercially available IC's for the circuits have demonstrated the validity of the circuit designs. The experiment results also indicate that the proposed circuits are integrable by a standard CMOS technology. The implementations are useful for studies and applications of chaos.
基金Supported by the National Natural Science Foundation of China (No. 61173178, 61003247, 61070246) and the Fundamental Research Funds for the Central University (No. COJER1018002,cdjerl018003).
文摘A new algorithm for a novel hash function, based on chaotic tent map with changeable parameter, is proposed and analyzed. The one dimensional and piecewise tent map with changeable parameters decided by the position index of blocked messages is chosen, and blocked massages translated into ASCII code values are employed as the iteration time of the chaotic tent map. The final 128-bit hash value is generated by logical XOR operation on intermediate hash values. Theoretical analysis and computer simulation indicate that the proposed algorithm can satisfy the performance requirements of hash function.