Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method f...Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs.展开更多
Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synapti...Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.展开更多
In recent years,transition metal borides(TMBs)have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard ma...In recent years,transition metal borides(TMBs)have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard materials.So far,however,no superhard materials have been found in TMBs.A large number of structures and potential new properties in TMBs are induced by the various hybridization ways of boron atoms and the high valence electrons of transition metals,which provide many possibilities for its application.And most TMBs have layered structures,which make TMBs have the potential to be a two-dimensional(2D)material.The 2D materials have novel properties,but the research on 2D TMBs is still nearly blank.In this paper,the research progress of TMBs is summarized involving structure,mechanical properties,and multifunctional properties.The strong covalent bonds of boron atoms in TMBs can form one-dimensional,twodimensional,and three-dimensional substructures,and the multiple electron transfer between transition metal and boron leads to a variety of chemical bonds in TMBs,which are the keys to obtain high hardness and multifunctional properties of TMBs.Further research on the multifunctional properties of TMBs,such as superconductors,catalysts,and high hardness ferromagnetic materials,is of great significance to the discovery of new multifunctional hard materials.展开更多
Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photorespo...Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.展开更多
As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy ...As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy conversation efficiency,which predispose them for promising applications as transparent electrode,flexible electronics,broadband photodetectors and battery electrodes.However,up to now,their device applications are in the early stage,especially because their controllable synthesis is still a great challenge.This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure,property,synthesis and applicability of TMCs.Finally,the current challenges and future perspectives are outlined for the application of 2D TMCs.展开更多
Atomically thin two-dimensional(2D)transition metal dichalcogenides(TMDCs)have stimulated enormous research interest due to rich phase structure,high theoretical carrier mobility and layer-dependent bandgap.In view of...Atomically thin two-dimensional(2D)transition metal dichalcogenides(TMDCs)have stimulated enormous research interest due to rich phase structure,high theoretical carrier mobility and layer-dependent bandgap.In view of the close correlation between defects and properties in 2D TMDCs,more attentions have been paid on the defect engineering in recent years,however the mechanism is still unclear.Herein,we review the critical progress of defect engineering and provide an extensive way to modulate the properties depressed by defects.To insight into the defect engineering,we firstly introduce two common kinds of defects during the growth progress of TMDCs and the possible distribution of energy levels those defects could induce.Then,various methods to improve point defects and grain boundaries during the period of growth are discussed intensively,with the assistance of which more large-area TMDCs films can be obtained.Considering the defects in TMDCs are inevitable regardless of concentration,we also highlight strategies to heal the defects after growth.Through dry methods or wet methods,the chalcogen vacancies can be repaired and thus,the performance of electronic device would be significantly enhanced.Finally,we propose the challenges and prospective for defect engineering in 2D TMDCs materials to support the optimization of device and lead them to wide applied fields.展开更多
Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the p...Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the past few decades,the research on flexible electronic devices based on organic materials has witnessed rapid development and substantial achievements,and inorganic semiconductors are also now beginning to shine in the field of flexible electronics.As validated by the latest research,some of the inorganic semiconductors,particularly those at low dimension,unexpectedly exhibited excellent mechanical flexibility on top of superior electrical properties.Herein,we bring together a comprehensive analysis on the recently burgeoning low-dimension inorganic semiconductor materials in flexible electronics,including one-dimensional(1D)inorganic semiconductor nanowires(NWs)and two-dimensional(2D)transition metal dichalcogenides(TMDs).The fundamental electrical properties,optical properties,mechanical properties and strain engineering of materials,and their performance in flexible device applications are discussed in detail.We also propose current challenges and predict future development directions including material synthesis and device fabrication and integration.展开更多
Rapid advancements in information technology push the explosive growth in data volume,requiring greater computing-capability logic circuits.However,conventional computing-capability improving technology,which mainly r...Rapid advancements in information technology push the explosive growth in data volume,requiring greater computing-capability logic circuits.However,conventional computing-capability improving technology,which mainly relies on increasing transistor number,encounters a significant challenge due to the weak field-effect characteristics of bulk siliconbased semiconductors.Still,the ultra-thin layered bodies of two-dimensional transition metal dichalcogenides(2D-TMDCs)materials enable excellent field-effect characteristics and multiple gate control ports,facilitating the integration of the functions of multiple transistors into one.Generally,the computing-capability improvement of the transistor cell in logic circuits will greatly alleviate the challenge in transistor numbers.In other words,one can only use a small number,or even just one,2DTMDCs-based transistors to conduct the sophisticated logic operations that have to be realized by using many traditional transistors.In this review,from material selection,device structure optimization,and circuit architecture design,we discuss the developments,challenges,and prospects for 2D-TMDCs-based logic circuits.展开更多
Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promisin...Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promising,to remove atmospheric pollutants.Two-dimensional transition metal oxides(2D TMOs)have recently become attractive catalysts due to their highly exposed active sites,excellent reactant transport properties,and extraordinary catalytic performance.This review systematically summarizes the topdown and bottom-up preparation methods of 2D TMOs and focuses on the specific applications of 2D TMOs in the catalytic elimination of atmospheric inorganic pollutants and volatile organic pollutants.The development of 2D TMOs in the catalytic elimination of atmospheric pollutants is prospected.This review is expected to provide design insights into efficient 2D TMOs to remove atmospheric pollutants.展开更多
Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimens...Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimensional materials offer a unique platform to build novel quantum devices.Layered transition metal dichalcogenides,when thinned down to atomic thicknesses,exhibit intriguing physical properties such as strong electron correlations.The study of strongly-correlated phenomena in twodimensional transition metal dichalcogenides has been a major research frontier in condensed matter physics.In this article,we review recent progress on strongly-correlated phenomena in two-dimensional transition metal dichalcogenides,including Mott insulators,quantum spin liquids,and Wigner crystals.These topics represent a rapidly developing research area,where tremendous opportunities exist in discovering exotic quantum phenomena,and in exploring their applications for future electronic devices.展开更多
Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory ...Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory calculations,we adopt two strategies to improve the HER catalytic activity of Ca_(2)N monolayer:introducing Ca or N vacancy and doping transition metal atoms(TM,refers to Ti,V,Cr,Mn,Fe,Zr,Nb,Mo,Ru,Hf,Ta and W).Interestingly,the Gibbs free energyΔG_(H*)of Ca_(2)N monolayer after introducing N vacancy is reduced to-0.146 e V,showing good HER catalytic activity.It is highlighted that,the HER catalytic activity of Ca_(2)N monolayer can be further enhanced with TM doping,the Gibbs free energyΔG_(H*)of single Mo and double Mn doped Ca_(2)N are predicted to be 0.119 and 0.139 e V,respectively.The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca_(2)N monolayer.展开更多
Urea oxidation reaction(UOR)is an auxiliary water electrolysis hydrogen production technology developed in recent years to replace oxygen evolution reaction and reduce energy consumption,which can produce hydrogen mor...Urea oxidation reaction(UOR)is an auxiliary water electrolysis hydrogen production technology developed in recent years to replace oxygen evolution reaction and reduce energy consumption,which can produce hydrogen more efficiently by low theoretical potential,reduce the average cost of electrochemical hydrogen production,and is a frontier research hotspot for renewable hydrogen energy.Two-dimensional(2D)nanomaterials as electrocatalysts have many favorable potential,such as it can effectively reduce the resistivity of materials and increase the specific surface area with certainty.This paper reviews the application of 2D materials in UOR in alkaline electrolytes.And a cross-sectional comparison of various material performance data including overpotential,Tafel slope,electrochemical active surface area(ECSA)and it stability test was conducted,which could illustrate the differences between materials composed of different elements.In addition,the main challenges hindering the progress of research on 2D materials in urea electrocatalysis processes and promising materials in this field in future are summarized and prospected.It is believed that this review will contribute to designing and analyzing highperformance 2D urea electrocatalysts for water splitting.展开更多
The weak van der Waals gap endows two dimensional transition metal dichalcogenides(2D TMDs)with the potential to realize guest intercalation and host exfoliation.Intriguingly,the liquid intercalation and exfoliation i...The weak van der Waals gap endows two dimensional transition metal dichalcogenides(2D TMDs)with the potential to realize guest intercalation and host exfoliation.Intriguingly,the liquid intercalation and exfoliation is a facile,low-cost,versatile and scalable strategy to modulate the structure and physiochemical property of TMDs via introducing foreign species into interlayer.In this review,firstly,we briefly introduce the resultant hybrid superlattice and disperse nanosheets with tailored properties fabricated via liquid intercalation and exfoliation.Subsequently,we systematically analyze the intercalation phenomenon and limitations of various intercalants in chemical or electrochemical methods.Afterwards,we intensely discuss diverse functionalities of resultant materials,focusing on their potential applications in energy conversion,energy storage,water purification,electronics,thermoelectrics and superconductor.Finally,we highlight the challenges and outlooks for precise and mass production of 2D TMDs-based materials via liquid intercalation and exfoliation.This review enriches the overview of liquid intercalation and exfoliation strategy,and paves the path for relevant high-performance devices.展开更多
Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic mater...Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.展开更多
In this paper, density functional computations have been applied to the structural, elastic and electronic properties of ternary transition metal diborides Re0.5Ir0.5B2, Re0.5Tc0.5B2, Os0.5W0.5B2 and Os0.5Ru0.5B2 in h...In this paper, density functional computations have been applied to the structural, elastic and electronic properties of ternary transition metal diborides Re0.5Ir0.5B2, Re0.5Tc0.5B2, Os0.5W0.5B2 and Os0.5Ru0.5B2 in hexagonal (P63/mmc) and orthorhombic (Pmmn) structures with both local density approximation and generalized gradient approximation. LDA gives smaller lattice parameters and larger elastic moduli than GGA. Both results show that the hexagonal ones are more stable than orthorhombic ones except Os0.5Ru0.5B2. Moreover, the hexagonal structure has superior elastic property than orthorhombic one. Generally speaking, the calculated elastic moduli of Re0.5Ir0.5B2 and Os0.5Ru0.5B2 are smaller than those values of Re0.5Tc0.5B2 and Os0.5W0.5B2 within the same structure because of the filling of antibonding states. The relativistic effects result in weaker bonds of Tc-B (Ru-B) than those of Re-B (Os-B). All the diborides are ultra-incompressible. Re0.5Tc0.5B2 has the largest shear modulus and it is a promising superhard diboride like Os0.5W0.5B2. The elastic properties are in high correlation with the bond strength. The shear moduli are more sensitive than the bulk moduli to the bond strength.展开更多
Hydrogen production by photoelectrochemical(PEC) water splitting converts the inexhaustible supply of solar radiation to storable H2 as clean energy and thus has received widespread attention.The efficiency of PEC wat...Hydrogen production by photoelectrochemical(PEC) water splitting converts the inexhaustible supply of solar radiation to storable H2 as clean energy and thus has received widespread attention.The efficiency of PEC water splitting is largely determined by the properties of the photoelectrodes.Two-dimensional(2 D) layered transition metal dichalcogenides(TMDs) are promising candidates for photoelectrodes due to their atomic layer thickness,tunable bandgap,large specific surface area,and high carrier mobility.Moreover,the construction of 2 D TMDs heterostructures provides freedom in material design,which facilitates the further improvement of PEC water splitting.This review begins by describing the mechanism of PEC water splitting and the advantages of 2 D TMDbased heterostructures for photo electrodes.Then,the design considerations of the heterostructures for enhanced PEC efficiency are comprehensively reviewed with a focus on material selection,band engineering,surface modification,and long-term durability.Finally,current challenges and future perspectives for the development of photoelectrodes based on 2 D TMDs heterostructures are addressed.展开更多
An emerging subclass of transition-metal dichalcogenides(TMDs),noble-transition-metal dichalcogenides(NMDs),has led to an increase in nanoscientific research in two-dimensional(2D)materials.NMDs feature a unique struc...An emerging subclass of transition-metal dichalcogenides(TMDs),noble-transition-metal dichalcogenides(NMDs),has led to an increase in nanoscientific research in two-dimensional(2D)materials.NMDs feature a unique structure and several useful properties.2D NMDs are promising candidates for a broad range of applications in areas such as photodetectors,phototransistors,saturable absorbers,and meta optics.In this review,the state of the art of 2D NMDs research,their structures,properties,synthesis,and potential applications are discussed,and a perspective of expected future developments is provided.展开更多
Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable car...Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable carrier mobility) and optoelectronic(because of their direct band gap at monolayer thickness) applications. Effective mass is a crucial physical quantity determining carriers transport, and thus the performance of these applications. Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials. Both electron and hole effective masses of different MX2(M = Mo, W and X = S, Se, Te), including in-layer/out-of-layer components, thickness dependence, and magnitude variation in heterostructures, are systemically calculated. The numerical results, chemical trends, and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.展开更多
Tremendous efforts have been devoted to preparing the ultrathin two-dimensional(2D)transition-metal dichalcogenides(TMDCs)and TMDCS-based heterojunctions owing to their unique properties and great potential applicatio...Tremendous efforts have been devoted to preparing the ultrathin two-dimensional(2D)transition-metal dichalcogenides(TMDCs)and TMDCS-based heterojunctions owing to their unique properties and great potential applications in next generation electronics and optoelectronics over the past decade.However,to fulfill the demands for practical applications,the batch production of 2D TMDCs with high quality and large area at the mild condi-tions is still a challenge.This feature article reviews the state-of-the art research progresses that focus on the preparation and the applications in elec-tronics and optoelectronics of 2D TMDCs and their van der Waals hetero-junctions.First,the preparation methods including chemical and physical vapor deposition growth are comprehensively outlined.Then,recent progress on the application of fabricated 2D TMDCs based materials is revealed with particular attention to electronic(eg,field effect transistors and logic circuits)and optoelectronic(eg,photodetectors,photovoltaics,and light emitting diodes)devices.Finally,the challenges and future prospects are considered based on the current advance of 2D TMDCs and related heterojunctions.展开更多
Two-dimensional(2D)transition metal dichalcogenide(TMD)nanosheets have attracted considerable attention owing to their diverse properties and great potential in a wide range of applications.In order to further tune th...Two-dimensional(2D)transition metal dichalcogenide(TMD)nanosheets have attracted considerable attention owing to their diverse properties and great potential in a wide range of applications.In order to further tune their properties and then broaden their application domain,large efforts have been devoted into engineering the structures of 2D TMD nanosheets at atomic scale,especially the alloying technology.Alloying different 2D TMD nanosheets into 2D alloys not only offers the opportunities to fine-tune their physical/chemical properties,but also opens up some unique properties,which are highly desirable for wide applications including electronics,optoelectronics and catalysis.This review summarizes the recent progress in the preparation,characterization and applications of 2D alloyed TMD nanosheets.展开更多
基金the National Nat-ural Science Foundation of China(Grant Nos.12025503,U23B2072,12074293,and 12275198)the Funda-mental Research Funds for the Center Universities(Grant Nos.2042024kf0001 and 2042023kf0196).
文摘Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs.
基金supported by the Characterization platform for advanced materials funded by the Korea Research Institute of Standards and Science(KRISS-2021-GP2021-0011)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government MSIT(2021M3D1A20396541).
文摘Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0401503 and 2018YFA0305700)the National Natural Science Foundation of China(Grant No.11575288)+1 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant Nos.XDB33000000,XDB25000000,and QYZDBSSW-SLH013)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202003)。
文摘In recent years,transition metal borides(TMBs)have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard materials.So far,however,no superhard materials have been found in TMBs.A large number of structures and potential new properties in TMBs are induced by the various hybridization ways of boron atoms and the high valence electrons of transition metals,which provide many possibilities for its application.And most TMBs have layered structures,which make TMBs have the potential to be a two-dimensional(2D)material.The 2D materials have novel properties,but the research on 2D TMBs is still nearly blank.In this paper,the research progress of TMBs is summarized involving structure,mechanical properties,and multifunctional properties.The strong covalent bonds of boron atoms in TMBs can form one-dimensional,twodimensional,and three-dimensional substructures,and the multiple electron transfer between transition metal and boron leads to a variety of chemical bonds in TMBs,which are the keys to obtain high hardness and multifunctional properties of TMBs.Further research on the multifunctional properties of TMBs,such as superconductors,catalysts,and high hardness ferromagnetic materials,is of great significance to the discovery of new multifunctional hard materials.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2017YFA0403600 and 2016YFA0300404)the National Natural Science Foundation of China (Grant Nos.11874363,11974356 and U1932216)the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP002)。
文摘Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.
基金This research was supported by grants from by the National Natural Science Foundation of China(52002254)Sichuan Science and Technology Program(2020YJ0262,2021YFH0127)+2 种基金Chunhui plan of Ministry of Education of China,Fundamental Research Funds for the Central Universities,China(YJ201893)State Key Lab of Advanced Metals and Materials,China(Grant No.2019-Z03)the Danish National Research Foundation and EU H2020RISE 2016-MNR4S Cell project.
文摘As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy conversation efficiency,which predispose them for promising applications as transparent electrode,flexible electronics,broadband photodetectors and battery electrodes.However,up to now,their device applications are in the early stage,especially because their controllable synthesis is still a great challenge.This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure,property,synthesis and applicability of TMCs.Finally,the current challenges and future perspectives are outlined for the application of 2D TMCs.
基金supported by the National Natural Science Foundation of China(Nos.52002254 and 52272160)the Sichuan Science and Technology Foundation(Nos.2020YJ0262,2021YFH0127,2023YFSY0002,and 2022YFS0045)+1 种基金the Chunhui Plan of the Ministry of Education,Fundamental Research Funds for the Central Universities,China(No.YJ201893)the Open-Foundation of Key Laboratory of Laser Device Technology,China North Industries Group Corporation Limited(Grant No.KLLDT202104).
文摘Atomically thin two-dimensional(2D)transition metal dichalcogenides(TMDCs)have stimulated enormous research interest due to rich phase structure,high theoretical carrier mobility and layer-dependent bandgap.In view of the close correlation between defects and properties in 2D TMDCs,more attentions have been paid on the defect engineering in recent years,however the mechanism is still unclear.Herein,we review the critical progress of defect engineering and provide an extensive way to modulate the properties depressed by defects.To insight into the defect engineering,we firstly introduce two common kinds of defects during the growth progress of TMDCs and the possible distribution of energy levels those defects could induce.Then,various methods to improve point defects and grain boundaries during the period of growth are discussed intensively,with the assistance of which more large-area TMDCs films can be obtained.Considering the defects in TMDCs are inevitable regardless of concentration,we also highlight strategies to heal the defects after growth.Through dry methods or wet methods,the chalcogen vacancies can be repaired and thus,the performance of electronic device would be significantly enhanced.Finally,we propose the challenges and prospective for defect engineering in 2D TMDCs materials to support the optimization of device and lead them to wide applied fields.
基金supported by the Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_0254).
文摘Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the past few decades,the research on flexible electronic devices based on organic materials has witnessed rapid development and substantial achievements,and inorganic semiconductors are also now beginning to shine in the field of flexible electronics.As validated by the latest research,some of the inorganic semiconductors,particularly those at low dimension,unexpectedly exhibited excellent mechanical flexibility on top of superior electrical properties.Herein,we bring together a comprehensive analysis on the recently burgeoning low-dimension inorganic semiconductor materials in flexible electronics,including one-dimensional(1D)inorganic semiconductor nanowires(NWs)and two-dimensional(2D)transition metal dichalcogenides(TMDs).The fundamental electrical properties,optical properties,mechanical properties and strain engineering of materials,and their performance in flexible device applications are discussed in detail.We also propose current challenges and predict future development directions including material synthesis and device fabrication and integration.
基金This work was supported by the National Natural Science Foundation of China(51991340,51991342,52225206,92163205,52188101,52142204,62204012,52250398,51972022)the National Key Research and Development Program of China(2018YFA0703503)+4 种基金the Overseas Expertise Introduction Projects for Discipline Innovation(B14003)Beijing Nova Program(20220484145)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the Fundamental Research Funds for the Central Universities(FRF-06500207)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-21-008).
文摘Rapid advancements in information technology push the explosive growth in data volume,requiring greater computing-capability logic circuits.However,conventional computing-capability improving technology,which mainly relies on increasing transistor number,encounters a significant challenge due to the weak field-effect characteristics of bulk siliconbased semiconductors.Still,the ultra-thin layered bodies of two-dimensional transition metal dichalcogenides(2D-TMDCs)materials enable excellent field-effect characteristics and multiple gate control ports,facilitating the integration of the functions of multiple transistors into one.Generally,the computing-capability improvement of the transistor cell in logic circuits will greatly alleviate the challenge in transistor numbers.In other words,one can only use a small number,or even just one,2DTMDCs-based transistors to conduct the sophisticated logic operations that have to be realized by using many traditional transistors.In this review,from material selection,device structure optimization,and circuit architecture design,we discuss the developments,challenges,and prospects for 2D-TMDCs-based logic circuits.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,China(Nos.XDA23010300 and XDA23010000)National Natural Science Foundation of China(Nos.51878644 and 41573138)+1 种基金the National Key Research and Development Program of China(No.2016YFA0203000)the Plan for"National Youth Talents"of the Organization Department of the Central Committee。
文摘Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promising,to remove atmospheric pollutants.Two-dimensional transition metal oxides(2D TMOs)have recently become attractive catalysts due to their highly exposed active sites,excellent reactant transport properties,and extraordinary catalytic performance.This review systematically summarizes the topdown and bottom-up preparation methods of 2D TMOs and focuses on the specific applications of 2D TMOs in the catalytic elimination of atmospheric inorganic pollutants and volatile organic pollutants.The development of 2D TMOs in the catalytic elimination of atmospheric pollutants is prospected.This review is expected to provide design insights into efficient 2D TMOs to remove atmospheric pollutants.
基金support from the National Natural Science Foundation of China(Grant No.12274087)Shanghai Science and Technology Development Funds(Grant No.22QA1400600)+2 种基金support from the National Key R&D Program of China(Grant No.2018YFA0305600)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)Shanghai Municipal Science and Technology Commission(Grant No.2019SHZDZX01)。
文摘Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimensional materials offer a unique platform to build novel quantum devices.Layered transition metal dichalcogenides,when thinned down to atomic thicknesses,exhibit intriguing physical properties such as strong electron correlations.The study of strongly-correlated phenomena in twodimensional transition metal dichalcogenides has been a major research frontier in condensed matter physics.In this article,we review recent progress on strongly-correlated phenomena in two-dimensional transition metal dichalcogenides,including Mott insulators,quantum spin liquids,and Wigner crystals.These topics represent a rapidly developing research area,where tremendous opportunities exist in discovering exotic quantum phenomena,and in exploring their applications for future electronic devices.
基金supported by the National Natural Science Foundation of China(No.21973012)the Natural Science Foundation of Fujian Province(Nos.2020J01474,2021J06011 and 2020J01351)the"Qishan Scholar"Scientific Research Project of Fuzhou University。
文摘Two-dimensional electride Ca_(2)N has strong electron transfer ability and low work function,which is a potential candidate for hydrogen evolution reaction(HER)catalyst.In this work,based on density functional theory calculations,we adopt two strategies to improve the HER catalytic activity of Ca_(2)N monolayer:introducing Ca or N vacancy and doping transition metal atoms(TM,refers to Ti,V,Cr,Mn,Fe,Zr,Nb,Mo,Ru,Hf,Ta and W).Interestingly,the Gibbs free energyΔG_(H*)of Ca_(2)N monolayer after introducing N vacancy is reduced to-0.146 e V,showing good HER catalytic activity.It is highlighted that,the HER catalytic activity of Ca_(2)N monolayer can be further enhanced with TM doping,the Gibbs free energyΔG_(H*)of single Mo and double Mn doped Ca_(2)N are predicted to be 0.119 and 0.139 e V,respectively.The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca_(2)N monolayer.
基金financially supported by the National Key Research and Development Program of China(No.2020YFB1713500)the Major Science and Technology Projects of Henan Province(No.221100230200)+3 种基金Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.23IRTSTHN009)the Project of Science and Technology Department of Henan Province(Nos.232102241034 and 222102240074)the Natural Science Foundation of Suzhou University of Science and Technology(No.XKQ2020002)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB530009)。
文摘Urea oxidation reaction(UOR)is an auxiliary water electrolysis hydrogen production technology developed in recent years to replace oxygen evolution reaction and reduce energy consumption,which can produce hydrogen more efficiently by low theoretical potential,reduce the average cost of electrochemical hydrogen production,and is a frontier research hotspot for renewable hydrogen energy.Two-dimensional(2D)nanomaterials as electrocatalysts have many favorable potential,such as it can effectively reduce the resistivity of materials and increase the specific surface area with certainty.This paper reviews the application of 2D materials in UOR in alkaline electrolytes.And a cross-sectional comparison of various material performance data including overpotential,Tafel slope,electrochemical active surface area(ECSA)and it stability test was conducted,which could illustrate the differences between materials composed of different elements.In addition,the main challenges hindering the progress of research on 2D materials in urea electrocatalysis processes and promising materials in this field in future are summarized and prospected.It is believed that this review will contribute to designing and analyzing highperformance 2D urea electrocatalysts for water splitting.
基金supported by the National Natural Science Foundation of China(Nos.51902101,61775101,62288102,and 61804082)the Youth Natural Science Foundation of Hunan Province(No.2021JJ40044)the Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘The weak van der Waals gap endows two dimensional transition metal dichalcogenides(2D TMDs)with the potential to realize guest intercalation and host exfoliation.Intriguingly,the liquid intercalation and exfoliation is a facile,low-cost,versatile and scalable strategy to modulate the structure and physiochemical property of TMDs via introducing foreign species into interlayer.In this review,firstly,we briefly introduce the resultant hybrid superlattice and disperse nanosheets with tailored properties fabricated via liquid intercalation and exfoliation.Subsequently,we systematically analyze the intercalation phenomenon and limitations of various intercalants in chemical or electrochemical methods.Afterwards,we intensely discuss diverse functionalities of resultant materials,focusing on their potential applications in energy conversion,energy storage,water purification,electronics,thermoelectrics and superconductor.Finally,we highlight the challenges and outlooks for precise and mass production of 2D TMDs-based materials via liquid intercalation and exfoliation.This review enriches the overview of liquid intercalation and exfoliation strategy,and paves the path for relevant high-performance devices.
基金supported by National Science Foundation for Young Scientists of China (No.61905161 and 51702219)the National Natural Science Foundation of China (No.61975134,61875138 and 61775147)+1 种基金the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20180206121837007)the Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)
文摘Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.
基金supported by the National Natural Science Foundation of China (No. 20973174)973 Project (2007CB805307)
文摘In this paper, density functional computations have been applied to the structural, elastic and electronic properties of ternary transition metal diborides Re0.5Ir0.5B2, Re0.5Tc0.5B2, Os0.5W0.5B2 and Os0.5Ru0.5B2 in hexagonal (P63/mmc) and orthorhombic (Pmmn) structures with both local density approximation and generalized gradient approximation. LDA gives smaller lattice parameters and larger elastic moduli than GGA. Both results show that the hexagonal ones are more stable than orthorhombic ones except Os0.5Ru0.5B2. Moreover, the hexagonal structure has superior elastic property than orthorhombic one. Generally speaking, the calculated elastic moduli of Re0.5Ir0.5B2 and Os0.5Ru0.5B2 are smaller than those values of Re0.5Tc0.5B2 and Os0.5W0.5B2 within the same structure because of the filling of antibonding states. The relativistic effects result in weaker bonds of Tc-B (Ru-B) than those of Re-B (Os-B). All the diborides are ultra-incompressible. Re0.5Tc0.5B2 has the largest shear modulus and it is a promising superhard diboride like Os0.5W0.5B2. The elastic properties are in high correlation with the bond strength. The shear moduli are more sensitive than the bulk moduli to the bond strength.
基金the National Key R&D Program of China(Nos.2018YFA0306900 and 2018YFA0209500)the National Natural Science Foundation of China(No.21872114)the Fundamental Research Funds for the Central Universities(No.20720210009)。
文摘Hydrogen production by photoelectrochemical(PEC) water splitting converts the inexhaustible supply of solar radiation to storable H2 as clean energy and thus has received widespread attention.The efficiency of PEC water splitting is largely determined by the properties of the photoelectrodes.Two-dimensional(2 D) layered transition metal dichalcogenides(TMDs) are promising candidates for photoelectrodes due to their atomic layer thickness,tunable bandgap,large specific surface area,and high carrier mobility.Moreover,the construction of 2 D TMDs heterostructures provides freedom in material design,which facilitates the further improvement of PEC water splitting.This review begins by describing the mechanism of PEC water splitting and the advantages of 2 D TMDbased heterostructures for photo electrodes.Then,the design considerations of the heterostructures for enhanced PEC efficiency are comprehensively reviewed with a focus on material selection,band engineering,surface modification,and long-term durability.Finally,current challenges and future perspectives for the development of photoelectrodes based on 2 D TMDs heterostructures are addressed.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Nos.61874141 and 11904239).
文摘An emerging subclass of transition-metal dichalcogenides(TMDs),noble-transition-metal dichalcogenides(NMDs),has led to an increase in nanoscientific research in two-dimensional(2D)materials.NMDs feature a unique structure and several useful properties.2D NMDs are promising candidates for a broad range of applications in areas such as photodetectors,phototransistors,saturable absorbers,and meta optics.In this review,the state of the art of 2D NMDs research,their structures,properties,synthesis,and potential applications are discussed,and a perspective of expected future developments is provided.
基金Project supported by the National Natural Science Foundation of China(Nos.11404131,11674121)the Program for JLU Science and Technology Innovative Research Teamthe Special Fund for Talent Exploitation in Jilin Province of China
文摘Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable carrier mobility) and optoelectronic(because of their direct band gap at monolayer thickness) applications. Effective mass is a crucial physical quantity determining carriers transport, and thus the performance of these applications. Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials. Both electron and hole effective masses of different MX2(M = Mo, W and X = S, Se, Te), including in-layer/out-of-layer components, thickness dependence, and magnitude variation in heterostructures, are systemically calculated. The numerical results, chemical trends, and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.
基金Young Teachers'Startup Fund for Scientific Research of Shenzhen University,Grant/Award Number:860-000002110426Natural Science Foundation of Shenzhen University。
文摘Tremendous efforts have been devoted to preparing the ultrathin two-dimensional(2D)transition-metal dichalcogenides(TMDCs)and TMDCS-based heterojunctions owing to their unique properties and great potential applications in next generation electronics and optoelectronics over the past decade.However,to fulfill the demands for practical applications,the batch production of 2D TMDCs with high quality and large area at the mild condi-tions is still a challenge.This feature article reviews the state-of-the art research progresses that focus on the preparation and the applications in elec-tronics and optoelectronics of 2D TMDCs and their van der Waals hetero-junctions.First,the preparation methods including chemical and physical vapor deposition growth are comprehensively outlined.Then,recent progress on the application of fabricated 2D TMDCs based materials is revealed with particular attention to electronic(eg,field effect transistors and logic circuits)and optoelectronic(eg,photodetectors,photovoltaics,and light emitting diodes)devices.Finally,the challenges and future prospects are considered based on the current advance of 2D TMDCs and related heterojunctions.
基金the funding support from the Start-Up Grant(No.9610495)from City University of Hong KongNational Natural Science Foundation of China(No.22005259)the funding support from JSPS-KAKENHI(Nos.19K15399,21K04839)。
文摘Two-dimensional(2D)transition metal dichalcogenide(TMD)nanosheets have attracted considerable attention owing to their diverse properties and great potential in a wide range of applications.In order to further tune their properties and then broaden their application domain,large efforts have been devoted into engineering the structures of 2D TMD nanosheets at atomic scale,especially the alloying technology.Alloying different 2D TMD nanosheets into 2D alloys not only offers the opportunities to fine-tune their physical/chemical properties,but also opens up some unique properties,which are highly desirable for wide applications including electronics,optoelectronics and catalysis.This review summarizes the recent progress in the preparation,characterization and applications of 2D alloyed TMD nanosheets.