A family of 2D transition metal carbides and nitrides known as MXenes has received increasing attention since the discovery of Ti3C2 in 2011. To date, about 30 different MXenes with well-defined structures and propert...A family of 2D transition metal carbides and nitrides known as MXenes has received increasing attention since the discovery of Ti3C2 in 2011. To date, about 30 different MXenes with well-defined structures and properties have been synthesized, and many more are theoretically predicted to exist. Due to the numerous assets including excellent mechanical properties, metallic conductivity,unique in-plane anisotropic structure, tunable band gap, and so on, MXenes rapidly positioned themselves at the forefront of the 2D materials world and have found numerous promising applications. Particular interest is devoted to applications in electrochemical energy storage, whereby 2D MXenes work either as electrodes,additives, separators, or hosts. This review summarizes recent advances in the synthesis, fundamental properties and composites of MXene and highlights the state-of-the-art electrochemical performance of MXene-based electrodes/devices.The progresses in the field of supercapacitors and Li-ion batteries, Li-S batteries, Naand other alkali metal ion batteries are reviewed, and current challenges and new opportunities for MXenes in this surging energy storage field are presented. In the focus of interest is the possibility to boost device-level performance, particularly that of rechargeable batteries, which are of utmost importance in future energy technologies. Very recently, the 2019 Nobel Prize in Chemistry was awarded to the inventors of the Li-ion battery. For sure, this will provide an additional stimulation to study fundamental aspects of electrochemical energy storage.展开更多
As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy ...As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy conversation efficiency,which predispose them for promising applications as transparent electrode,flexible electronics,broadband photodetectors and battery electrodes.However,up to now,their device applications are in the early stage,especially because their controllable synthesis is still a great challenge.This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure,property,synthesis and applicability of TMCs.Finally,the current challenges and future perspectives are outlined for the application of 2D TMCs.展开更多
Among the various two-dimensional(2D)materials,more than 99%of them are noncentrosymmetric.However,since the commonly used substrates are generally centrosymmetric,antiparallel islands are usually inevitable in the gr...Among the various two-dimensional(2D)materials,more than 99%of them are noncentrosymmetric.However,since the commonly used substrates are generally centrosymmetric,antiparallel islands are usually inevitable in the growth of noncentrosymmetric 2D materials because of the energetic equivalency of these two kinds of antiparallel islands on centrosymmetric substrates.Therefore,achieving the growth of noncentrosymmetric 2D single crystals has long been a great challenge compared with the centrosymmetric ones like graphene.In this review,we presented the remarkable efforts and progress in the past decade,through precise chemical processes.We first discussed the great challenge and possible strategies in the growth of noncentrosymmetric 2D single crystals.Then,we focused on the advancements made in producing representative noncentrosymmetric 2D single crystals,including hexagonal boron nitride(hBN),transition metal dichalcogenides(TMDs),and other noncentrosymmetric 2D materials.At last,we summarized and looked forward to future research on the growth of layer-,stacking-,and twist-controlled noncentrosymmetric 2D single crystals and their heterostructures.展开更多
An effective method is designed to construct three-dimensional(3D)Nb_(2)C/reduced graphene oxide(rGO)hybrid aerogels through a low-temperature graphene oxide(GO)-assisted hydrothermal self-assembly followed by freeze-...An effective method is designed to construct three-dimensional(3D)Nb_(2)C/reduced graphene oxide(rGO)hybrid aerogels through a low-temperature graphene oxide(GO)-assisted hydrothermal self-assembly followed by freeze-drying and annealing.The intimately coupled Nb_(2)C/rGO hybrid aerogel combines the advantages of large specific surface area and rich 3D interconnected porous structure of aerogel as well as high conductivity and low potassium diffusion energy barrier of Nb_(2)C,which not only effectively prevents the self-restacking of Nb2C nanosheets to allow more active sites exposed and accommodate the volume change during the charge/discharge process,but also increases the accessibility of electrolyte and promotes the rapid transfer of ions/electrons.As a result,Nb_(2)C/rGO-2 as the anode of potassium ion batteries(KIBs)delivers a large reversible specific capacity(301.7 mAh·g^(−1)after 500 cycles at 2.0 A·g^(−1)),an ultrahigh rate capability(155.5 mAh·g^(−1)at 20 A·g^(−1)),and an excellent long-term large-current cycle stability(198.8 mAh·g^(−1)after 1,000 cycles at 10 A·g^(−1),with a retention of 83.3%).Such a high-level electrochemical performance,especially the ultrahigh rate capability,is the best among transition metal carbides and nitride(MXene)-based materials reported so far for KIBs.The diffusion kinetics of K+is investigated thoroughly,and the synergetic charge–discharge mechanism and the structure–performance relationship of Nb_(2)C/rGO are revealed explicitly.The present work provides a good strategy to solve the self-restacking problem of two-dimensional materials and also enlarges the potential applications of MXenes.展开更多
Intensive research effort is currently focused on the development of efficient, reliable, and environmentally safe electrochemical energy storage systems due to the ever-increasing global energy storage demand. Li ion...Intensive research effort is currently focused on the development of efficient, reliable, and environmentally safe electrochemical energy storage systems due to the ever-increasing global energy storage demand. Li ion battery systems have been used as the primary energy storage device over the last three decades. However, low abundance and uneven distribution of lithium and cobalt in the earth crust and the associated cost of these materials, have resulted in a concerted effort to develop beyond lithium electrochemical storage systems. In the case of non-Li ion rechargeable systems, the development of electrode materials is a significant challenge, considering the larger ionic size of the metal-ions and slower kinetics. Two-dimensional(2D) materials, such as graphene, transition metal dichalcogenides, MXenes and phosphorene, have garnered significant attention recently due to their multi-faceted advantageous properties: large surface areas, high electrical and thermal conductivity, mechanical strength, etc. Consequently, the study of 2D materials as negative electrodes is of notable importance as emerging non-Li battery systems continue to generate increasing attention. Among these interesting materials, graphene has already been extensively studied and reviewed, hence this report focuses on 2D materials beyond graphene for emerging non-Li systems. We provide a comparative analysis of 2D material chemistry, structure, and performance parameters as anode materials in rechargeable batteries and supercapacitors.展开更多
The carbides and nitrides of transition metals known as“MXenes”refer to a fast-growing family of two-dimensional materials discovered in 2011.Thanks to their unique nanolayer structure,superior electrical,mechanical...The carbides and nitrides of transition metals known as“MXenes”refer to a fast-growing family of two-dimensional materials discovered in 2011.Thanks to their unique nanolayer structure,superior electrical,mechanical,and thermal properties,MXenes have shown great potential in addressing the critical overheating issues that jeopardize the performance,stability,and lifetime of high-energy-density components in modern devices such as microprocessors,integrated circuits,and capacitors,etc.The outstanding intrinsic thermal conductivity of MXenes has been proved by experimental and theoretical research.Numerous MXenes-enabled high thermal conductivity composites incorporated with polymer matrix have also been reported and widely used as thermal management materials.Considering the booming heat dissipation demands,MXenes-enabled thermal management material is an extremely valuable and scalable option for modern electronics industries.However,the fundamental thermal transport mechanisms behind the MXenes family remain unclear.The MXene thermal conductivity disparities between the theoretical prediction and experimental results are still significant.To better understand the thermal conduction in MXenes and provide more insights for engineering high-performance MXene thermal management materials,in this article,we summarize recent progress on thermal conductive MXenes.The essential factors that affect MXenes intrinsic thermal conductivities are tackled,selected MXenes-polymer composites are highlighted,and prospects and challenges are also discussed.展开更多
Combination of flexible multifunctional stealth technology properties such as electromagnetic(EM)and infrared(IR)stealth is crucial to the development of aerospace,military,and electronic fields,but the synthesis tech...Combination of flexible multifunctional stealth technology properties such as electromagnetic(EM)and infrared(IR)stealth is crucial to the development of aerospace,military,and electronic fields,but the synthesis technology still has a significant challenge.Herein,we have successfully designed and synthesized highly flexible MXene@cellulose lamellae/borate ion(MXCB)sheets with strong high‐temperature EM‐IR bi‐stealth through sequential bridging of hydrogen and covalent bonds.The resultant MXCB sheets display high conductivity and good mechanical features such as flexibility,stretchability,fatigue resistance,and ultrasonic damage.MXCB sheets have a high tensile strength of 795 MPa.Furthermore,MXCB sheets with different thicknesses indicate exceptional high‐temperature thermal‐camouflage characteristics.This reduces the radiation temperature of the target object(>300°C)to 100°C.The conductivity of MXCB sheet with 3μm thickness is 6108 S/cm and the EM interference(EMI)shielding value is 39.74 dB.The normalized surface‐specific EMI SE absolute shielding effectiveness(SSE/t)is as high as 39312.78 dB·cm2/g,which remained 99.39%even after 10,000 times repeated folding.These multifunctional ultrathin MXCB sheets can be arranged by vacuum‐assisted induction to develop EM‐IR bi‐stealth sheet.展开更多
基金support from Empa internal research grantthe SFI-SIRG award under the Agreement Number 18/SIRG/5621+2 种基金National Natural Science Foundation of China(61874166,U1832149)Natural Science Foundation of Gansu province(18JR3RA292)the Fundamental Research Funds for the Central Universities(lzujbky-2017-k21)
文摘A family of 2D transition metal carbides and nitrides known as MXenes has received increasing attention since the discovery of Ti3C2 in 2011. To date, about 30 different MXenes with well-defined structures and properties have been synthesized, and many more are theoretically predicted to exist. Due to the numerous assets including excellent mechanical properties, metallic conductivity,unique in-plane anisotropic structure, tunable band gap, and so on, MXenes rapidly positioned themselves at the forefront of the 2D materials world and have found numerous promising applications. Particular interest is devoted to applications in electrochemical energy storage, whereby 2D MXenes work either as electrodes,additives, separators, or hosts. This review summarizes recent advances in the synthesis, fundamental properties and composites of MXene and highlights the state-of-the-art electrochemical performance of MXene-based electrodes/devices.The progresses in the field of supercapacitors and Li-ion batteries, Li-S batteries, Naand other alkali metal ion batteries are reviewed, and current challenges and new opportunities for MXenes in this surging energy storage field are presented. In the focus of interest is the possibility to boost device-level performance, particularly that of rechargeable batteries, which are of utmost importance in future energy technologies. Very recently, the 2019 Nobel Prize in Chemistry was awarded to the inventors of the Li-ion battery. For sure, this will provide an additional stimulation to study fundamental aspects of electrochemical energy storage.
基金This research was supported by grants from by the National Natural Science Foundation of China(52002254)Sichuan Science and Technology Program(2020YJ0262,2021YFH0127)+2 种基金Chunhui plan of Ministry of Education of China,Fundamental Research Funds for the Central Universities,China(YJ201893)State Key Lab of Advanced Metals and Materials,China(Grant No.2019-Z03)the Danish National Research Foundation and EU H2020RISE 2016-MNR4S Cell project.
文摘As a new member in two-dimensional materials family,transition metal carbides(TMCs)have many excellent properties,such as chemical stability,in-plane anisotropy,high conductivity and flexibility,and remarkable energy conversation efficiency,which predispose them for promising applications as transparent electrode,flexible electronics,broadband photodetectors and battery electrodes.However,up to now,their device applications are in the early stage,especially because their controllable synthesis is still a great challenge.This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure,property,synthesis and applicability of TMCs.Finally,the current challenges and future perspectives are outlined for the application of 2D TMCs.
基金This work was supported by Guangdong Major Project of Basic and Applied Basic Research(2021B030103000)the National Natural Science Foundation of China(12322406,52102043,52025023,51991342,52021006 and 61905215)+5 种基金the Key R&D Program of Guangdong Province(2020B010189001,2019B010931001,2018B010109009 and 2018B030327001)the Pearl River Talent Recruitment Program of Guangdong Province(2019ZT08C321)the Key Project of Science and Technology of Guangzhou(202201010383)the Natural Science Foundation o f Guangdong Provinces(2023A1515012743)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB3300000)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Among the various two-dimensional(2D)materials,more than 99%of them are noncentrosymmetric.However,since the commonly used substrates are generally centrosymmetric,antiparallel islands are usually inevitable in the growth of noncentrosymmetric 2D materials because of the energetic equivalency of these two kinds of antiparallel islands on centrosymmetric substrates.Therefore,achieving the growth of noncentrosymmetric 2D single crystals has long been a great challenge compared with the centrosymmetric ones like graphene.In this review,we presented the remarkable efforts and progress in the past decade,through precise chemical processes.We first discussed the great challenge and possible strategies in the growth of noncentrosymmetric 2D single crystals.Then,we focused on the advancements made in producing representative noncentrosymmetric 2D single crystals,including hexagonal boron nitride(hBN),transition metal dichalcogenides(TMDs),and other noncentrosymmetric 2D materials.At last,we summarized and looked forward to future research on the growth of layer-,stacking-,and twist-controlled noncentrosymmetric 2D single crystals and their heterostructures.
基金the National Natural Science Foundation of China(No.21773116)and Modern Analysis Center of Nanjing University.
文摘An effective method is designed to construct three-dimensional(3D)Nb_(2)C/reduced graphene oxide(rGO)hybrid aerogels through a low-temperature graphene oxide(GO)-assisted hydrothermal self-assembly followed by freeze-drying and annealing.The intimately coupled Nb_(2)C/rGO hybrid aerogel combines the advantages of large specific surface area and rich 3D interconnected porous structure of aerogel as well as high conductivity and low potassium diffusion energy barrier of Nb_(2)C,which not only effectively prevents the self-restacking of Nb2C nanosheets to allow more active sites exposed and accommodate the volume change during the charge/discharge process,but also increases the accessibility of electrolyte and promotes the rapid transfer of ions/electrons.As a result,Nb_(2)C/rGO-2 as the anode of potassium ion batteries(KIBs)delivers a large reversible specific capacity(301.7 mAh·g^(−1)after 500 cycles at 2.0 A·g^(−1)),an ultrahigh rate capability(155.5 mAh·g^(−1)at 20 A·g^(−1)),and an excellent long-term large-current cycle stability(198.8 mAh·g^(−1)after 1,000 cycles at 10 A·g^(−1),with a retention of 83.3%).Such a high-level electrochemical performance,especially the ultrahigh rate capability,is the best among transition metal carbides and nitride(MXene)-based materials reported so far for KIBs.The diffusion kinetics of K+is investigated thoroughly,and the synergetic charge–discharge mechanism and the structure–performance relationship of Nb_(2)C/rGO are revealed explicitly.The present work provides a good strategy to solve the self-restacking problem of two-dimensional materials and also enlarges the potential applications of MXenes.
基金supported by the National Science Foundation Grant Number 1454151
文摘Intensive research effort is currently focused on the development of efficient, reliable, and environmentally safe electrochemical energy storage systems due to the ever-increasing global energy storage demand. Li ion battery systems have been used as the primary energy storage device over the last three decades. However, low abundance and uneven distribution of lithium and cobalt in the earth crust and the associated cost of these materials, have resulted in a concerted effort to develop beyond lithium electrochemical storage systems. In the case of non-Li ion rechargeable systems, the development of electrode materials is a significant challenge, considering the larger ionic size of the metal-ions and slower kinetics. Two-dimensional(2D) materials, such as graphene, transition metal dichalcogenides, MXenes and phosphorene, have garnered significant attention recently due to their multi-faceted advantageous properties: large surface areas, high electrical and thermal conductivity, mechanical strength, etc. Consequently, the study of 2D materials as negative electrodes is of notable importance as emerging non-Li battery systems continue to generate increasing attention. Among these interesting materials, graphene has already been extensively studied and reviewed, hence this report focuses on 2D materials beyond graphene for emerging non-Li systems. We provide a comparative analysis of 2D material chemistry, structure, and performance parameters as anode materials in rechargeable batteries and supercapacitors.
基金supported by the Office of Naval Research under Award Number N000142312569。
文摘The carbides and nitrides of transition metals known as“MXenes”refer to a fast-growing family of two-dimensional materials discovered in 2011.Thanks to their unique nanolayer structure,superior electrical,mechanical,and thermal properties,MXenes have shown great potential in addressing the critical overheating issues that jeopardize the performance,stability,and lifetime of high-energy-density components in modern devices such as microprocessors,integrated circuits,and capacitors,etc.The outstanding intrinsic thermal conductivity of MXenes has been proved by experimental and theoretical research.Numerous MXenes-enabled high thermal conductivity composites incorporated with polymer matrix have also been reported and widely used as thermal management materials.Considering the booming heat dissipation demands,MXenes-enabled thermal management material is an extremely valuable and scalable option for modern electronics industries.However,the fundamental thermal transport mechanisms behind the MXenes family remain unclear.The MXene thermal conductivity disparities between the theoretical prediction and experimental results are still significant.To better understand the thermal conduction in MXenes and provide more insights for engineering high-performance MXene thermal management materials,in this article,we summarize recent progress on thermal conductive MXenes.The essential factors that affect MXenes intrinsic thermal conductivities are tackled,selected MXenes-polymer composites are highlighted,and prospects and challenges are also discussed.
基金supported by the Nanning Innovation and Entrepreneurship Leading Talents“Yongjiang Plan”Project of Guangxi Province,China(No.2021016)Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars of China(No.LR19C160001)the Scientific Research Foundation of Zhejiang A&F University(No.2019FR009).
文摘Combination of flexible multifunctional stealth technology properties such as electromagnetic(EM)and infrared(IR)stealth is crucial to the development of aerospace,military,and electronic fields,but the synthesis technology still has a significant challenge.Herein,we have successfully designed and synthesized highly flexible MXene@cellulose lamellae/borate ion(MXCB)sheets with strong high‐temperature EM‐IR bi‐stealth through sequential bridging of hydrogen and covalent bonds.The resultant MXCB sheets display high conductivity and good mechanical features such as flexibility,stretchability,fatigue resistance,and ultrasonic damage.MXCB sheets have a high tensile strength of 795 MPa.Furthermore,MXCB sheets with different thicknesses indicate exceptional high‐temperature thermal‐camouflage characteristics.This reduces the radiation temperature of the target object(>300°C)to 100°C.The conductivity of MXCB sheet with 3μm thickness is 6108 S/cm and the EM interference(EMI)shielding value is 39.74 dB.The normalized surface‐specific EMI SE absolute shielding effectiveness(SSE/t)is as high as 39312.78 dB·cm2/g,which remained 99.39%even after 10,000 times repeated folding.These multifunctional ultrathin MXCB sheets can be arranged by vacuum‐assisted induction to develop EM‐IR bi‐stealth sheet.