期刊文献+
共找到2,390篇文章
< 1 2 120 >
每页显示 20 50 100
Surface Topography of Fine-grained ZrO_2 Ceramic by Two-dimensional Ultrasonic Vibration Grinding
1
作者 丁爱玲 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第6期1162-1165,共4页
The surface quality of fine-grained ZrO2 engineering ceramic were researched using 270# diamond wheel both with and without work-piece two-dimension ultrasonic vibration grinding(WTDUVG). By AFM images, the surface ... The surface quality of fine-grained ZrO2 engineering ceramic were researched using 270# diamond wheel both with and without work-piece two-dimension ultrasonic vibration grinding(WTDUVG). By AFM images, the surface topography and the micro structure of the two-dimensional ultrasonic vibration grinding ceramics were especially analyzed. The experimental results indicate that the surface roughness is related to grinding vibration mode and the material removal mechanism. Surface quality of WTDUVG is superior to that of conventional grinding, and it is easy for two-dimensional ultrasonic vibration grinding that material removal mechanism is ductile mode grinding. 展开更多
关键词 two-dimension ultrasonic vibration grinding surface topography ductile grinding
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
2
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
Low-frequency hybridized excess vibrations of two-dimensional glasses
3
作者 付立存 郑一鸣 王利近 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期550-555,共6页
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i... One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties. 展开更多
关键词 density of states vibrational modes sound attenuation two-dimensional glasses
下载PDF
Application of ultrasonic vibration to shape-casting based on resonance vibration analysis
4
作者 Zong-hang Han Zhi-ming Wang +2 位作者 Zhi-ping Sun Bing-rong Zhang Wei-feng Rao 《China Foundry》 SCIE CAS CSCD 2023年第4期339-346,共8页
The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic hor... The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic horn is inserted directly into the melt,ultrasonic treatment can be utilized in the semi-continuous casting process to produce aluminum ingots with simple shapes.However,due to the attenuation of ultrasound,it is challenging to apply the direct inserting method in the die casting process to produce complex castings.Thus,in this study,the impact of ultrasonic vibration on the microstructure of a gravity die-cast AlSi9Cu3end cap was investigated by applying ultrasonic vibration on the core(indirect method).It is found that the effect of ultrasonic vibration relies greatly on the resonance mode of the core.Selection of ultrasonic vibration schemes mainly depends on the core structure,and only a strong vibration can significantly refine the microstructure of the casting.For castings with complex structures,an elaborated ultrasonic vibration design is necessary to refine the microstructure of the specified casting.In addition,strong vibration applied on the feeding channel can promote the feeding ability of casting by breaking the dendrites during solidification,and consequently reduce the shrinkage porosity. 展开更多
关键词 resonance mode ultrasonic vibration feeding channel aluminum alloy casting
下载PDF
Design and analysis of a two-dimensional vibration control mechanism based on vibro-impact damping
5
作者 张来喜 QIAN Feng WU Mingliang 《High Technology Letters》 EI CAS 2023年第1期105-112,共8页
The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed bet... The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed between the end-effector and the robot is proposed,which can suppress the axial and torsional vibrations based on the principle of vibro-impact(VI)damping.The energy dissipation of the system by vibro-impact damping is analyzed.Then,the influence of the structure parameters on the vibration attenuation effect is studied,and a semi-active vibration control method of variable collision clearance is presented.The simulation results show that the control method has effective vibration control performance. 展开更多
关键词 robotic drilling two-dimensional vibration control impact damping variable clearance semi-active vibration control
下载PDF
Comparative analysis of single-crater parameters in ultrasonic-assisted and unassisted micro-EDM of Ti6Al4V using discharge plasma imaging
6
作者 Sohaib Raza Chandrakant Nirala 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期11-24,共14页
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi... Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model. 展开更多
关键词 ultrasonic vibration Discharge crater Plasma diameter Single discharge
下载PDF
Chatter Suppression with Ultrasonic Elliptical Vibration Based on Energy Principle 被引量:4
7
作者 马春翔 E Shamoto T Moriwaki 《Defence Technology(防务技术)》 SCIE EI CAS 2005年第2期229-232,共4页
A new method is proposed to suppress chatter, in which the ultrasonic elliptical vibration is added on the cutting tool edge. It results in the fact that the rake face of tool is separated from the chip and the direct... A new method is proposed to suppress chatter, in which the ultrasonic elliptical vibration is added on the cutting tool edge. It results in the fact that the rake face of tool is separated from the chip and the direction of the frictional force between the rake face and the chip is reversed in each cycle of elliptical vibration cutting. The experimental investigations show that the chatter can be suppressed effectively by adding ultrasonic elliptical vibration on the cutting tool edge. In order to make clear the reason of chatter suppression, the mechanism of chatter suppression is analyzed theoretically from the viewpoint of energy. 展开更多
关键词 ultrasonic ELLIPTICAL vibration chatter SUPPRESSION ENERGY PRINCIPLE
下载PDF
Microstructure and properties of rheo-diecast Al-20Si-2Cu-1Ni-0.4Mg alloy with direct ultrasonic vibration process 被引量:6
8
作者 吴树森 钟鼓 +2 位作者 万里 安萍 毛有武 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期763-767,共5页
The microstructure and properties of Al-20Si-2Cu-1Ni-0.4Mg alloy fabricated with semi-solid rheo-diecasting process were studied.A newly developed direct ultrasonic vibration process(DUV process) was used in the prepa... The microstructure and properties of Al-20Si-2Cu-1Ni-0.4Mg alloy fabricated with semi-solid rheo-diecasting process were studied.A newly developed direct ultrasonic vibration process(DUV process) was used in the preparation of the semi-solid slurry of this alloy.The results show that the primary Si particles in this alloy is about 20 μm in size under DUV for 90 s in the semi-solid temperature range,compared to about 30 μm in the alloy without DUV.It is discovered that the primary Si particles distribute more homogeneously and have regular shape,but have lower volume fraction after DUV.The tensile strength at room temperature is about 310 MPa,and the tensile strength and elongation of the semi-solid die castings are increased by 34% and 45%,respectively,compared with the traditional liquid die castings.The high-temperature tensile strength at 300 ℃ of this high Si aluminum alloy reaches 167 MPa,and the coefficient of thermal expansion is 17.37×10-6/℃ between 25 and 300 ℃.This indicates that this high Si content Al-Si alloy produced with the DUV process is suitable to be used in the manufacture of pistons or other heat-resistant parts. 展开更多
关键词 SEMI-SOLID metals RHEOCASTING AL-SI alloy ultrasonic vibration properties
下载PDF
Mechanical properties of 2024-T4 aluminium alloy joints in ultrasonic vibration enhanced friction stir welding 被引量:9
9
作者 刘小超 武传松 +1 位作者 Michael Rethmeier Andreas Pittner 《China Welding》 EI CAS 2013年第4期8-13,共6页
Ultrasonic vibration enhanced friction stir welding (UVeFSW) is a recent modification of conventional friction stir welding (FSW), which transmits ultrasonic vibration directly into the localized area of the workp... Ultrasonic vibration enhanced friction stir welding (UVeFSW) is a recent modification of conventional friction stir welding (FSW), which transmits ultrasonic vibration directly into the localized area of the workpiece near and ahead of the rotating tool. In this study, a high strength aluminium alloy (2024-T4) was welded by this process and conventional FSW, respectively. Then tensile tests, microhardness tests and fracture surface analysis were performed successively on the welding samples. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints. The microhardness of the stir zone also increases. 展开更多
关键词 ultrasonic vibration friction stir welding mechanical properties
下载PDF
Degassing effect of ultrasonic vibration in molten melt and semi-solid slurry of Al-Si alloys 被引量:6
10
作者 Wu Shusen Liu Longfei +2 位作者 Ma Qianqian Mao Youwu An Ping 《China Foundry》 SCIE CAS 2012年第3期201-206,共6页
In the process of semi-solid slurry preparation with direct ultrasonic vibration (UV) by dipping the horn into the melt, one of the questions is whether the gas content in the melt would be increased or not by the cav... In the process of semi-solid slurry preparation with direct ultrasonic vibration (UV) by dipping the horn into the melt, one of the questions is whether the gas content in the melt would be increased or not by the cavitation effect of ultrasonic vibration. By application of quantitative gas content measurement technique, this paper investigated the effect of the ultrasonic vibration on the gas content of both the melt and the semi-solid slurry of Al-Si alloys, and the variations of the gas contents in two kinds of aluminum alloys, i.e., A356 alloy and Al-20Si-2Cu-1Ni-0.6RE alloy (Al-20Si for short). The results show that ultrasonic vibration has an obvious degassing effect on the molten melt, especially on the semi-solid slurry of Al-Si alloy which is below the liquidus temperature by less than 20 ℃. The ultrasonic degassing efficiency of the A356 alloy decreases with the reduction of the initial gas content in the melt, and it is nearly unchanged for the Al-20Si alloy. The gas content of both alloys decreases when the ultrasonic vibration time is increased. The best vibration time for Al-20Si alloy at the liquid temperature of 710 ℃ and semi-solid temperature of 680 ℃ is 60 s and 90 s, respectively; and the degassing efficiency is 48% and 35%, respectively. The mechanism of ultrasonic degassing effect is discussed. 展开更多
关键词 ultrasonic vibration semi-solid slurry aluminum alloy gas content DEGASSING
下载PDF
Control System Development and Experimental Study on Ultrasonic Vibration Feeding 被引量:5
11
作者 ZENG Xianghui QI Lehua +2 位作者 HUANG Hua LI Yang YANG Fang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1083-1088,共6页
Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the t... Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the third medium for most UVF devices.The vibrator is directly touched with the capillary can transmit mechanical energy on the capillary as much as possible,and the powder feeding can be controlled more precise.However,there are few reports about it.A direct UVF system which integrates the function of micro feeding,process observing,and powder forming was developed in this work.In order to analyze the effect of the system factors on feeding,a group of L9(3^3) orthogonal experiments are selected to confirm the effect of level change of factors.The three factors are capillary nozzle diameter,amplitude and signal.The flow rate was stable for each combined factors,and the optimum combination for the minimum flow rate are choosing small capillary,small amplitude,and triangular wave orderly.The whole process of feeding includes start point,middle stage and stop stage.Starting of feeding was synchronized to vibration when the amplitude of capillary nozzle is larger than critical amplitude.Then,the feeding process enters the middle stage,the feeding state is observed by the CCD,and it is very stable in the middle stage.Overflow of feeding can't be eliminated during the stop stage.The features of the deposited powder lines are analyzed; the overflow can be diminished by choosing small capillary and appropriate ratio of the capillary nozzle diameter to the particle size.Chinese characters lattices were deposited to validate the ability of quantitatively feeding and fixed feeding of UVF.Diameters of all powder dots show normal distribution,and more than 60% dots are concentrated from 550 μm to 650 μm,and the average diameter for all the dots is 597 μm.Most dots positions are well approached to their scheduled positions,and the maximum deviation is 0.27 mm.The new direct UVF system is used to implement experiments,which confirms the precise controllable of feeding.According improve the feeding technique,it suits well for rapid prototyping,chemistry,pharmaceutics and many other fields,which require precise measurement and feed minim powder. 展开更多
关键词 ultrasonic vibration feeding (UVF) CAPILLARY orthogonal experiment start/stop control quantitatively feeding fixed feeding
下载PDF
Effect of ultrasonic vibration on the dechromisation corrosion of a CuCr alloy in HCl solution 被引量:4
12
作者 XU Tao GAO Huawei +1 位作者 LIU Jianhua YU Cuiyan 《Rare Metals》 SCIE EI CAS CSCD 2007年第4期398-402,共5页
The effect of ultrasonic vibration on the dechromisation corrosion of a CuCr alloy in HC1 solution was studied and the corrosion mechanisms were analyzed. It is found that ultlasonic vibration reduces the dechromisati... The effect of ultrasonic vibration on the dechromisation corrosion of a CuCr alloy in HC1 solution was studied and the corrosion mechanisms were analyzed. It is found that ultlasonic vibration reduces the dechromisation incubation time, accelerates the dechromisafion corrosion rate, decreases the temperature and concentration of HC1 solution, and when the dechromisation occurs it seriously weakens the microstmcture of dechromisation layer. It is concluded that ultrasonic vibration can accelerate destruction of the passivation film on the Cr surface and increase the activities of Cl^- and Cr. 展开更多
关键词 CuCr alloy dechromisation corrosion ultrasonic vibration passivation film
下载PDF
Effect of ultrasonic vibration on the friction stir weld quality of aluminium alloy 被引量:7
13
作者 刘小超 武传松 +1 位作者 张皓庭 陈茂爱 《China Welding》 EI CAS 2013年第3期12-17,共6页
A novel variant of friction stir welding process, referred as ultrasonic vibration enhanced friction stir welding, is developed to transmit ultrasonic vibration energy directly into the localized area of the workpiece... A novel variant of friction stir welding process, referred as ultrasonic vibration enhanced friction stir welding, is developed to transmit ultrasonic vibration energy directly into the localized area of the workpiece near and ahead of the rotating tool. Experiments are conducted on 6061-T4 aluminium alloy plates by this new process and the conventional friction stir welding process, respectively. The morphology and macrograph of the welds under both conditions are observed and contrasted. The experimental results show that ultrasonic vibration enhanced friction stir welding can improve the weld formation quality and increase the welding efficiency. And it just needs a smaller axial downward force. Because that the added action of ultrasonic vibration energy may enhance the localized softening extent and the plastic flow around the tool. In addition, it also improves the mechanical properties of the welded joints. 展开更多
关键词 ultrasonic vibration friction stir welding enhanced plastic deformation
下载PDF
Research on Ultrasonic Vibration Grinding of the Hard and Brittle Materials 被引量:4
14
作者 YANG Xin-hong HAN Jie-cai +2 位作者 ZHANG Yu-min ZUO Hong-bo ZHANG Xue-jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期9-13,共5页
It is well known that grinding techniques are main methods to machine hard and brittle materials such as engineering ceramics. But the conventional grinding has many shortcomings such as poorer surface finish, quicker... It is well known that grinding techniques are main methods to machine hard and brittle materials such as engineering ceramics. But the conventional grinding has many shortcomings such as poorer surface finish, quicker wear and tear of grinding tools, lower efficiency and so on. Ultrasonic vibration grinding (UVG) which combines ultrasonic machining and grinding emerged as a developing and promising technique in recent years. In this paper, experimental studies on UVG were conducted on several kinds of hard and brittle material by altering processing parameters such as vibration frequency and its amplitude, diamond abrasive grit size, cutting depth, feeding speed and rotary speed of tools. The experimental results show that alteration in any of above mentioned parameters will bring effects on the processed surface finish of these materials. Of them, the diamond abrasive grit size has the greatest. Moreover, conventional grinding experiments were also carried out on these materials. By comparison, it was found that the UVG is superior to the conventional method in terms of the ground surface quality, the working efficiency and the wear rate of tools. 展开更多
关键词 ultrasonic vibration grinding (UVG) hard and brittle materials surface roughness wear extent
下载PDF
Formation of hypereutectic silicon particles in hypoeutectic Al-Si alloys under the influence of high-intensity ultrasonic vibration 被引量:3
15
作者 Xiaogang Jian Qingyou Han 《China Foundry》 SCIE CAS 2013年第2期118-123,共6页
The modification of eutectic silicon is of general interest since fine eutectic silicon along with fine primary aluminum grains improves mechanical properties and ductilities. In this study, high intensity ultrasonic ... The modification of eutectic silicon is of general interest since fine eutectic silicon along with fine primary aluminum grains improves mechanical properties and ductilities. In this study, high intensity ultrasonic vibration was used to modify the complex microstructure of aluminum hypoeutectic alloys. The ultrasonic vibrator was placed at the bottom of a copper mold with molten aluminum. Hypoeutectic Al-Si alloy specimens with a unique in-depth profile of microstructure distribution were obtained. Polyhedral silicon particles, which should form in a hypereutectic alloy, were obtained in a hypoeutectic Al-Si alloy near the ultrasonic radiator where the silicon concentration was higher than the eutectic composition. The formation of hypereutectic silicon near the radiator surface indicates that high-intensity ultrasonic vibration can be used to influence the phase transformation process of metals and alloys. The size and morphology of both the silicon phase and the aluminum phase varies with increasing distance from the ultrasonic probe/radiator. Silicon morphology develops into three zones. Polyhedral primary silicon particles present in zoneⅠ, within 15 mm from the ultrasonic probe/radiator. Transition from hypereutectic silicon to eutectic silicon occurs in zoneⅡ about 15 to 20 μm from the ultrasonic probe/radiator. The bulk of the ingot is in zoneⅢ and is hypoeutectic Al-Si alloy containing fine lamellar and fibrous eutectic silicon. The grain size is about 15 to 25 μm in zoneⅠ, 25 to 35 μm in zoneⅡ, and 25 to 55 μm in zoneⅢ. The morphology of the primary α-Al phase is also changed from dendritic (in untreated samples) to globular. Phase evolution during the solidification process of the alloy subjected to ultrasonic vibration is described. 展开更多
关键词 eutectic solidification aluminum alloys microstructure and ultrasonic vibration
下载PDF
Review: Progress and Trends in Ultrasonic Vibration Assisted Friction Stir Welding 被引量:4
16
作者 Najib Ahmad Muhammad Chuansong Wu Girish Kumar Padhy 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期16-42,共27页
This paper aims to reviewthe state-of-the-art of ultrasonic vibration assisted friction stir welding(UVAFSW) process. Particular attention has been paid on the modes of ultrasonic exertion,experimental results and eff... This paper aims to reviewthe state-of-the-art of ultrasonic vibration assisted friction stir welding(UVAFSW) process. Particular attention has been paid on the modes of ultrasonic exertion,experimental results and effects of ultrasonic vibrations on process effectiveness and joint quality. The trends of various aspects with and without ultrasonic vibrations in FSW process are studied and presented. The influence of ultrasonic vibrations on welding loads, temperature history, weld morphology, material flow, weld microstructure and mechanical properties are revisited. Ultrasonic assisted FSW offers numerous advantages over the conventional FSW process. The superimposing of high-frequency vibrations improves various phenomena of the process and the physical,metallurgical,mechanical and tribological properties of the welded joint. The ultrasonic assisted FSW process has a potential to benefit the industry sector. A checklist listing the materials and process parameters used in the documented studies has been presented for quick reference. 展开更多
关键词 friction stir welding ultrasonic vibration assisted FSW acoustic softening welding load thermal history material flow microstructure mechanical properties
下载PDF
Effect of Ultrasonic Vibration on Deformation in Micro-blanking Process with Copper Foil 被引量:2
17
作者 王春举 LIU Yang +3 位作者 WAN Shengxiang GUO Bin SHAN Debin ZHANG Bo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期404-409,共6页
Effect of ultrasonic vibration on deformation in micro-blanking was investigated with copper foils of different grain sizes using a developed device. It is found that maximum shearing strength is decreased by ultrason... Effect of ultrasonic vibration on deformation in micro-blanking was investigated with copper foils of different grain sizes using a developed device. It is found that maximum shearing strength is decreased by ultrasonic vibration, and this effect becomes bigger for coarse grain than that for fine grain, which can be attributed to acoustic softening effect considering the absorbed acoustic energy. Surface roughness R_a of smooth zone decreases for the polishing effect of vibration at the lateral contact surface. When ultrasonic vibration is applied, the sheared deformation area becomes relatively narrow, and it leads to the reduction of radius of rollover. The analysis of cross section in sheared deformation area shows that the crack initiation is inhabited for the existence of acoustic softening, and the proportion of smooth zone is increased. Also, angle of crack propagation becomes smaller because of periodic strain, and the angle of facture surface is decreased. As a result, the quality of micro-sheet parts is improved by applying ultrasonic vibration. 展开更多
关键词 micro-blanking ultrasonic vibration maximum SHEARING strength acoustic SOFTENING EFFECT periodic strain crack INITIATION and propagation
下载PDF
Microstructure Evolution of AS41 Magnesium Alloy Fabricated by Ultrasonic Vibration 被引量:2
18
作者 张志强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第5期820-823,共4页
The effects of ultrasonic vibration on the grain size and morphology of Mg2Si in Mg-4 wt% Al-1 wt%Si(AS41) alloys designed were evaluated. The results show that the major constituents of the alloy include β-Mg17Al1... The effects of ultrasonic vibration on the grain size and morphology of Mg2Si in Mg-4 wt% Al-1 wt%Si(AS41) alloys designed were evaluated. The results show that the major constituents of the alloy include β-Mg17Al12 and Mg2Si phase, and no difference in the type of constituents between without ultrasonic vibration and with ultrasonic vibration. Without any ultrasonic vibration, the grain size and Mg2Si phase in AS41 alloy are coare structure. However, the microstructure with fine uniform grains and Mg2Si particles are achieved with ultrasonic vibration. The crystal grains and Mg2Si particles refine with increase in the ultrasonic vibration intensity. When the ultrasonic vibration intensity was too low or too high, coarse structures could be obtained. The analysis of refinement mechanism indicates that the acoustic cavitation and flows induced by ultrasonic vibration lead to the fine uniform microstructure. 展开更多
关键词 magnesium alloy ultrasonic vibration MICROSTRUCTURE
下载PDF
Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium 被引量:4
19
作者 Tuoya SUN Junhong GUO E.PAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第8期1077-1094,共18页
A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction be... A mathematical model for nonlocal vibration and buckling of embedded two-dimensional(2 D) decagonal quasicrystal(QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2 D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional(3 D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories.Numerical examples are provided to display the effects of the quasiperiodic direction,length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence,and medium elasticity on the vibration frequency and critical buckling load of the 2 D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate.This feature is useful since the frequency and critical buckling load of the 2 D decagonal QCs as coating materials of plate structures can now be tuned as one desire. 展开更多
关键词 two-dimensional(2D)quasicrystal(QC) NANOPLATE vibration BUCKLING elastic medium exact solution
下载PDF
A Novel Approach for Observing Morphology of Polypropylene under Ultrasonic Vibration by SALS 被引量:1
20
作者 LiFangTONG YeSHEN +1 位作者 QiangZHENG YongGangSHANGGUAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第7期841-844,共4页
关键词 POLYPROPYLENE ultrasonic vibration CRYSTALLIZATION SALS.
下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部