The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the correspond...The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the corresponding numerical approximation in an H1 norm for the velocity, and L2 norm for both the velocity and the pressure by use of the Stokes projection.展开更多
A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and...A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.展开更多
The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational f...The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.展开更多
A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbu...A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbulent viscosity. For the explicit scheme, the Runge-Kutta time-stepping methods of third orders are used in time integration, and space discretization for the right-hand side (RHS) terms of semi-discrete equations is performed by third-order ENN scheme for inviscid terms and fourth-order compact difference for viscous terms. Numerical experiments suggest that the present scheme not only has a fairly rapid convergence rate, but also can generate a highly resolved approximation to numerical solution, even to unsteady problem.展开更多
With the cell vertex finite volume discretization in space and second order backward implicit discretization in time, 2D unsteady Navier Stokes equations are solved by a dual time stepping method to simulate compr...With the cell vertex finite volume discretization in space and second order backward implicit discretization in time, 2D unsteady Navier Stokes equations are solved by a dual time stepping method to simulate compressible viscous flow around rigid airfoils in arbitrary unsteady motion. The selection of physical time step is not restricted by stability condition any more, and most of the successful acceleration techniques used in steady calculations can be implemented to increase the computation efficiency.展开更多
In this paper, the Crank-Nicholson + component-consistent pressure correction method for the numerical solution of the unsteady incompressible Navier-Stokes equation of [1] on the rectangular half-Staggered mesh has b...In this paper, the Crank-Nicholson + component-consistent pressure correction method for the numerical solution of the unsteady incompressible Navier-Stokes equation of [1] on the rectangular half-Staggered mesh has been extended to the curvilinear half-Staggered mesh. The discrete projection, both for the projection step in the solution procedure and for the related differential-algebraic equations, has been carefully studied and verified. It is proved that the proposed method is also unconditionally (in t) nonlinearly stable on the curvilinear mesh, provided the mesh is not too skewed. It is seen that for problems with an outflow boundary, the half-Staggered mesh is especially advantageous. Results of preliminary numerical experiments support these claims.展开更多
In this paper, a full discrete local projection stabilized (LPS) method is proposed to solve the optimal control problems of the unsteady Navier-Stokes equations with equal order elements. Convective effects and pre...In this paper, a full discrete local projection stabilized (LPS) method is proposed to solve the optimal control problems of the unsteady Navier-Stokes equations with equal order elements. Convective effects and pressure are both stabilized by using the LPS method. A priori error estimates uniformly with respect to the Reynolds number are obtained, providing the true solutions are sufficient smooth. Numerical experiments are implemented to illustrate and confirm our theoretical analysis.展开更多
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS...An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.展开更多
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy ...This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.展开更多
This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a sim...This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a similarity nonlinear ordinary differential equation, and a closed form solution is obtained for the unsteadiness parameter of 2. The boundary layer energy equation is transformed into a similarity equation,and is solved for a constant wall temperature and a time-dependent uniform wall heat flux case. The solution domain, velocity, and temperature profiles are calculated for different combinations of parameters including the Prandtl number, mass transfer parameter, wall moving parameter, and magnetic parameter. Two solution branches are obtained for certain combinations of the controlling parameters, and a stability analysis demonstrates that the lower solution branch is not stable. The present solutions provide an exact solution to the entire unsteady MHD NS equations, which can be used for validating the numerical code of computational fluid dynamics.展开更多
To find intrinsically different symmetry reductions and inequivalent group invariant solutions of the 2D unsteady incompressible boundary-layer equations, a two-dimensional optimal system is constructed which attribut...To find intrinsically different symmetry reductions and inequivalent group invariant solutions of the 2D unsteady incompressible boundary-layer equations, a two-dimensional optimal system is constructed which attributed to the classification of the corresponding Lie subalgebras. The comprehensiveness and inequivalence of the optimal system are shown clearly under different values of invariants. Then by virtue of the optimal system obtained, the boundary-layer equations are directly reduced to a system of ordinary differential equations(ODEs) by only one step. It has been shown that not only do we recover many of the known results but also find some new reductions and explicit solutions, which may be previously unknown.展开更多
文摘The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the corresponding numerical approximation in an H1 norm for the velocity, and L2 norm for both the velocity and the pressure by use of the Stokes projection.
文摘A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.
基金supported by the National Natural Science Foundation of China(11232002)the Ph.D.Student Foundation of Chinese Ministry of Education(30400002011105001)
文摘The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.
基金The project supported by the National Natural Science Foundation of China under Contract No.59576007 and 19572038
文摘A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbulent viscosity. For the explicit scheme, the Runge-Kutta time-stepping methods of third orders are used in time integration, and space discretization for the right-hand side (RHS) terms of semi-discrete equations is performed by third-order ENN scheme for inviscid terms and fourth-order compact difference for viscous terms. Numerical experiments suggest that the present scheme not only has a fairly rapid convergence rate, but also can generate a highly resolved approximation to numerical solution, even to unsteady problem.
文摘With the cell vertex finite volume discretization in space and second order backward implicit discretization in time, 2D unsteady Navier Stokes equations are solved by a dual time stepping method to simulate compressible viscous flow around rigid airfoils in arbitrary unsteady motion. The selection of physical time step is not restricted by stability condition any more, and most of the successful acceleration techniques used in steady calculations can be implemented to increase the computation efficiency.
基金Supported by Projects 19472068 and 19772056 of the National Natural Science Foundation ofChina and the Laboratory of Scientifi
文摘In this paper, the Crank-Nicholson + component-consistent pressure correction method for the numerical solution of the unsteady incompressible Navier-Stokes equation of [1] on the rectangular half-Staggered mesh has been extended to the curvilinear half-Staggered mesh. The discrete projection, both for the projection step in the solution procedure and for the related differential-algebraic equations, has been carefully studied and verified. It is proved that the proposed method is also unconditionally (in t) nonlinearly stable on the curvilinear mesh, provided the mesh is not too skewed. It is seen that for problems with an outflow boundary, the half-Staggered mesh is especially advantageous. Results of preliminary numerical experiments support these claims.
基金This work is supported by the Natural Science Foundation of China (No. 11271273) and the Scientific Research Foundation of the Education Department of Sichuan Province of China (No.16ZB0300). The authors would like to thank the associate editor and anonymous referees comments to improve the quality of the manuscript.
文摘In this paper, a full discrete local projection stabilized (LPS) method is proposed to solve the optimal control problems of the unsteady Navier-Stokes equations with equal order elements. Convective effects and pressure are both stabilized by using the LPS method. A priori error estimates uniformly with respect to the Reynolds number are obtained, providing the true solutions are sufficient smooth. Numerical experiments are implemented to illustrate and confirm our theoretical analysis.
文摘An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.
文摘This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.
文摘This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a similarity nonlinear ordinary differential equation, and a closed form solution is obtained for the unsteadiness parameter of 2. The boundary layer energy equation is transformed into a similarity equation,and is solved for a constant wall temperature and a time-dependent uniform wall heat flux case. The solution domain, velocity, and temperature profiles are calculated for different combinations of parameters including the Prandtl number, mass transfer parameter, wall moving parameter, and magnetic parameter. Two solution branches are obtained for certain combinations of the controlling parameters, and a stability analysis demonstrates that the lower solution branch is not stable. The present solutions provide an exact solution to the entire unsteady MHD NS equations, which can be used for validating the numerical code of computational fluid dynamics.
基金Supported by the Global Change Research Program of China under Grant No.2015CB953904National Natural Science Foundation of China under Grant Nos.11275072,11435005,11675054Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No.ZF1213
文摘To find intrinsically different symmetry reductions and inequivalent group invariant solutions of the 2D unsteady incompressible boundary-layer equations, a two-dimensional optimal system is constructed which attributed to the classification of the corresponding Lie subalgebras. The comprehensiveness and inequivalence of the optimal system are shown clearly under different values of invariants. Then by virtue of the optimal system obtained, the boundary-layer equations are directly reduced to a system of ordinary differential equations(ODEs) by only one step. It has been shown that not only do we recover many of the known results but also find some new reductions and explicit solutions, which may be previously unknown.