期刊文献+
共找到2,974篇文章
< 1 2 149 >
每页显示 20 50 100
Gridless Solution Method for Two-Dimensional Unsteady Flow 被引量:2
1
作者 王刚 孙迎丹 叶正寅 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期8-14,共7页
The main purpose of this paper is to develop a gridless method for unsteady flow simulation. A quadrantal point infilling strategy is developed to generate point and combine clouds of points automatically. A point-mov... The main purpose of this paper is to develop a gridless method for unsteady flow simulation. A quadrantal point infilling strategy is developed to generate point and combine clouds of points automatically. A point-moving algorithm is introduced to ensure the clouds of points following the movements of bodyboundaries. A dual time method for solving the two-dimenslonal Euler equations in Arbitrary Lagrangian-Eulerian (ALE) formulation is presented. Dual time method allows the real-time step to be chosen on the basis of accuracy rather than stability. It also permits the acceleration techniques, which are commonly used to speed up steady flow calculations, to be used when marching the equations in pseudo time. The spatial derivatives, which are used to estimating the inviscid flux, are directly approximated by using local least-squares curve method. An explicit multistage Runge-Kutta algorithm is used to advance the flow equations in pseudo time. In order to accelerate the solution to convergence, local time stepping technique and residual averaging are employed. The results of NACA0012 airfoil in transonic steady flow are presented to verify the accuracy of the present spatial discretization method. Finally, two AGARD standard test cases in which NACA0012 airfoil and NACA64A010 airfoil oscillate in transonic flow are simulated. The computational results are compared with the experimental data to demonstrate the validity and practicality of the presented method. 展开更多
关键词 computational fluid dynamics gridless method dual time method unsteady flow Euler equation
下载PDF
A Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows 被引量:2
2
作者 Shuaibin HAN Shuhai ZHANG Hanxin ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期1007-1018,共12页
The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theor... The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows. 展开更多
关键词 Lagrangian criterion unsteady flow separation finite-time Lyapunov ex-ponent(FTLE) two-dimensional periodic flow
下载PDF
CHAOTIC MOTIONS AND LIMIT CYCLE FLUTTER OF TWO-DIMENSIONAL WING IN SUPERSONIC FLOW 被引量:4
3
作者 Guoyong Zheng Yiren Yang 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第5期441-448,共8页
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contai... Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow. 展开更多
关键词 supersonic flow NONLINEARITY CHAOS limit cycle flutter two-dimensional wing
下载PDF
A Comparison between the Reduced Differential Transform Method and Perturbation-Iteration Algorithm for Solving Two-Dimensional Unsteady Incompressible Navier-Stokes Equations 被引量:1
4
作者 Abdul-Sattar J. Al-Saif Assma J. Harfash 《Journal of Applied Mathematics and Physics》 2018年第12期2518-2543,共26页
In this work, approximate analytical solutions to the lid-driven square cavity flow problem, which satisfied two-dimensional unsteady incompressible Navier-Stokes equations, are presented using the kinetically reduced... In this work, approximate analytical solutions to the lid-driven square cavity flow problem, which satisfied two-dimensional unsteady incompressible Navier-Stokes equations, are presented using the kinetically reduced local Navier-Stokes equations. Reduced differential transform method and perturbation-iteration algorithm are applied to solve this problem. The convergence analysis was discussed for both methods. The numerical results of both methods are given at some Reynolds numbers and low Mach numbers, and compared with results of earlier studies in the review of the literatures. These two methods are easy and fast to implement, and the results are close to each other and other numerical results, so it can be said that these methods are useful in finding approximate analytical solutions to the unsteady incompressible flow problems at low Mach numbers. 展开更多
关键词 unsteady INCOMPRESSIBLE VISCOUS flows REDUCED Differential Transform Method Perturbation-Iteration Algorithm
下载PDF
Experimental Investigation of Two-Dimensional Velocity on the 90&deg;Double Bend Pipe Flow Using Ultrasound Technique 被引量:3
5
作者 San Shwin Ari Hamdani +1 位作者 Hideharu Takahashi Hiroshige Kikura 《World Journal of Mechanics》 2017年第12期340-359,共20页
An experimental investigation was performed to investigate two-dimensional axial velocity field at downstream of the 90&deg;double bend pipe with and without inlet swirling condition. The main objectives are to fi... An experimental investigation was performed to investigate two-dimensional axial velocity field at downstream of the 90&deg;double bend pipe with and without inlet swirling condition. The main objectives are to find separation region and observe the influence of inlet swirling flow on the velocity fluctuation using ultrasound technique. The experiments were carried out in the pipe at Reynolds number Re = 1 × 104. In case of inlet swirling flow condition, a rotary swirler was used as swirling generator, and the swirl number was setup S = 1. The ultrasonic measurements were taken at four downstream locations of the second bend pipe. Phased Array Ultrasonic Velocity Profiler (Phased Array UVP) technique was applied to obtain the two-dimensional velocity of the fluid and the axial and tangential velocity fluctuation. It was found that the secondary reverse flow became smaller at the downstream from the bend when the inlet condition on the first bend was swirling flow. In addition, inlet swirling condition influenced mainly on the tangential velocity fluctuation, and its maximum turbulence intensity was 40%. 展开更多
关键词 Phased Array Ultrasonic VELOCITY PROFILER Swirling flow two-dimensional VELOCITY ROTARY SWIRLER
下载PDF
A simplified two-dimensional boundary element method with arbitrary uniform mean flow 被引量:2
6
作者 Bassem Barhoumi Safa Ben Hamouda Jamel Bessrour 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期207-221,共15页
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr... To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation. 展开更多
关键词 two-dimensional convected Helmholtz equation two-dimensional convected Green’s function two-dimensional convected boundary element method Arbitrary uniform mean flow two-dimensional acoustic sources
下载PDF
THE TRANSIENT TWO-DIMENSIONAL FLOW THROUGH DOUBLE POROUS MEDIA
7
作者 刘慈群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第3期265-270,共6页
This paper presents the analytical solutions in Laplace domain for two-dimensional nonsteady flow of slightly compressible liquid in porous media with double porosity by using the methods of integral transforms and va... This paper presents the analytical solutions in Laplace domain for two-dimensional nonsteady flow of slightly compressible liquid in porous media with double porosity by using the methods of integral transforms and variables separation. The effects of the ratio of storativities to , interporosity flow parameter on the pressure behaviors for a vertically fractured well with infinite conductivity are investigated by using the method of numerical inversion. The new log-log diagnosis graph of the pressures is given and analysed. 展开更多
关键词 double porous media two-dimensional porous flow transient pressure numerical inversion
下载PDF
Three-Dimensional Numerical Simulation of Stably Stratified Flows over a Two-Dimensional Hill
8
作者 Takanori Uchida 《Open Journal of Fluid Dynamics》 2017年第4期579-595,共17页
Stably stratified flows over a two-dimensional hill are investigated in a channel of finite depth using a three-dimensional direct numerical simulation (DNS). The present study follows onto our previous two-dimensiona... Stably stratified flows over a two-dimensional hill are investigated in a channel of finite depth using a three-dimensional direct numerical simulation (DNS). The present study follows onto our previous two-dimensional DNS studies of stably stratified flows over a hill in a channel of finite depth and provides a more realistic simulation of atmospheric flows than our previous studies. A hill with a constant cross-section in the spanwise (y) direction is placed in a 3-D computational domain. As in the previous 2-D simulations, to avoid the effect of the ground boundary layer that develops upstream of the hill, no-slip conditions are imposed only on the hill surface and the surface downstream of the hill;slip conditions are imposed on the surface upstream of the hill. The simulated 3-D flows are discussed by comparing them to the simulated 2-D flows with a focus on the effect of the stable stratification on the non-periodic separation and reattachment of the flow behind the hill. In neutral (K = 0, where K is a non-dimensional stability parameter) and weakly stable (K = 0.8) conditions, 3-D flows over a hill differ clearly from 2-D flows over a hill mainly because of the three-dimensionality of the flow, that is the development of a spanwise flow component in the 3-D flows. In highly stable conditions (K = 1, 1.3), long-wavelength lee waves develop downstream of the hill in both 2-D and 3-D flows, and the behaviors of the 2-D and 3-D flows are similar in the vicinity of the hill. In other words, the spanwise component of the 3-D flows is strongly suppressed in highly stable conditions, and the flow in the vicinity of the hill becomes approximately two-dimensional in the x and z directions. 展开更多
关键词 FINITE-DIFFERENCE Method Stably STRATIFIED flowS two-dimensional HILL
下载PDF
Cerebral blood flow volume measurements of the carotid artery and ipsilateral branches using two-dimensional phase-contrast magnetic resonance angiography
9
作者 Gang Guo Yonggui Yang Weiqun Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第30期2367-2371,共5页
The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC ... The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC MRA, the present study localized the region of interest at blood vessels of the neck using PC MRA based on three-dimensional time-of-flight sequences, and the velocity encoding was set to 80 cm/s. Results of the measurements showed that the error rate was 7.0±6.0% in the estimation of BFV in the internal carotid artery, the external carotid artery and the ipsilateral common carotid artery. There was no significant difference, and a significant correlation in BFV between internal carotid artery + external carotid artery and ipsilateral common carotid artery. In addition, the BFV of the common carotid artery was correlated with that of the ipsilateral internal carotid artery. The main error was attributed to the external carotid artery and its branches. Therefore, after selecting the appropriate scanning parameters and protocols, 2D PC MRA is more accurate in the determination of BFV in the carotid arteries. 展开更多
关键词 two-dimensional phase-contrast magnetic resonance angiography blood flow three-dimensional time-of-flight phase-contrast magnetic resonance angiography internal carotid artery common carotid artery external carotid artery velocity encoding
下载PDF
AN EXPLORATION TO THE MODELLING OF TWO-DIMENSIONAL COMPLEX TURBULENT SHEAR FLOWS
10
《Chinese Journal of Aeronautics》 SCIE EI CAS 1988年第2期79-86,共8页
The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy vis... The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy viscosity hypothesis as a result from transportation of mean momentum over distance by the large structures and arrives at a shear stress expression including the second order derivatives of the mean velocity.However,his expression greatly overestimates the shear stress.This implies that the flow particles are unlikely to have enough memory of the mean momentum over distance.By assuming the departure from eddy viscosity hypothesis as a result from transportation of the shear stress contained in smaller eddies over distance by the large structures,the present author has arrived at a new shear stress expression.The shear stress estimated so far is in good agreement with the experiments. 展开更多
关键词 AN EXPLORATION TO THE MODELLING OF two-dimensional COMPLEX TURBULENT SHEAR flowS
下载PDF
Numerical Investigation of the Unsteady Flow in a Transonic Compressor with Curved Rotors 被引量:3
11
作者 毛明明 宋彦萍 王仲奇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第2期97-104,共8页
The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to investigate the effects of the curved rotors on the stage performance and the aerodynamic inter... The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to investigate the effects of the curved rotors on the stage performance and the aerodynamic interaction between the blade rows. The results show that, compared to the compressor with unurved rotors, the compressor under scrutiny acquires remarkable increases in efficiency with significantly reduced amplitudes of the time-dependent fluctuation. The amplitude of the pressure fluctuation around the stator leading edge decreases at both endwalls, but increases at the mid-span in the curved rotors. The pressure fluctuation near the stator leading edge, therefore, becomes more uniform in the radial direction of this compressor. Except for the leading edge area, the pressure fluctuatinn amplitude declines remarkably in the tip region of stator surface downstream of the curved rotor, but hardly changes in the middle and at the hub. 展开更多
关键词 transonic compressor unsteady flow field curved rotor aerodynamic interaction
下载PDF
GRIDLESS METHOD FOR UNSTEADY VISCOUS FLOWS
12
作者 蒲赛虎 陈红全 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期1-8,共8页
Gridless method is developed for unsteady viscous flows involving moving boundaries. The point distri- bution of gridless method is implemented in an isotropic or anisotropic way according to the features of viscous f... Gridless method is developed for unsteady viscous flows involving moving boundaries. The point distri- bution of gridless method is implemented in an isotropic or anisotropic way according to the features of viscous flows. In the area far away from the body, the traditional cloud of isotropic points is used, while in the adjacent area, the cloud of anisotropic points is distributed. In this way, the point spacing normal to the wall can be small enough for simulating the boundary layer, and meanwhile, the total number of points in the computational do- main can be controlled due to large spacing in other tangential direction through the anisotropic way. A fast mov- ing technique of clouds of points at each time-step is presented based on the attenuation law of disturbed motion for unsteady flows involving moving boundaries. In the mentioned cloud of points, a uniform weighted least- square curve fit method is utilized to discretize the spatial derivatives of the Navier-Stokes equations. The pro- posed gridless method, coupled with a dual time-stepping method and the Spalart-Allmaras turbulence model, is implemented for the Navier-Stokes equations. The computational results of unsteady viscous flows around a NLR7301 airfoil with an oscillating flap and a pitching NACA0012 airfoil are presented in a good agreement with the available experimental data. 展开更多
关键词 gridless method cloud of points Navier-Stokes equations unsteady flow viscous flow
下载PDF
UNSTEADY FLOWS OF A GENERALIZED SECOND GRADE FLUID WITH THE FRACTIONAL DERIVATIVE MODEL BETWEEN TWO PARALLEL PLATES 被引量:19
13
作者 谭文长 徐明喻 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第5期471-476,共6页
The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized secon... The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus.The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates.In addition,the solutions of the shear stresses at the plates are also determined. 展开更多
关键词 fractional derivative unsteady flows generalized second grade fluid parallel plates
下载PDF
Studies of the unsteady supersonic base flows around three afterbodies 被引量:12
14
作者 Zhixiang Xiao Song Fu School of Aerospace Engineering,Tsinghua University, 100084 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期471-479,共9页
Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-e... Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-eddy simulation) hybrid methods, detached eddy simulation (DES) and delayed-DES (DDES), are used to predict the base flow characteristics around the baseline Cy afterbody. All the RANS and hybrid methods are based on the two-equation SST (shear-stress transport) model with compressible corrections (CC). According to the comparison of measurements, both DES and DDES can produce more satisfactory results than RANS. RANS can only present the "stable" flow pat- terns, while the hybrid methods can demonstrate unsteady flow structures. DDES and DES results are little different from one another although the latter exhibits better agreement with the experiment. DES is taken to investigate the 5° BT and three-step afterbodies. The mean flow data and the instantaneous turbulent coherent structures are compared against available measurements. 展开更多
关键词 CYLINDRICAL Boattailed and three-stepafterbodies DES and DDES unsteady flow
下载PDF
Generation of Dynamic Grids and Computation of Unsteady Transonic Flows around Assemblies 被引量:6
15
作者 陆志良 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第1期1-5,共5页
Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate f... Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate factorization algorithm and internal Newton iterations. An integral boundary layer method based on the dissipation integral is used to account for viscous effects. The computational results about unsteady transonic forces on wings, bodies and control surfaces are in agreement with experimental data. 展开更多
关键词 ALGEBRA Algorithms Approximation theory Boundary layer flow Computational fluid dynamics Integral equations Iterative methods Newtonian flow Transonic flow unsteady flow Viscous flow WINGS
下载PDF
Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders 被引量:9
16
作者 Haitao Qi Hui Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第4期301-305,共5页
The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases ... The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus. 展开更多
关键词 Viscoelastic fluid unsteady flow Fractional Maxwell model Exact solution
下载PDF
Unsteady Flow and Structural Behaviors of Centrifugal Pump under Cavitation Conditions 被引量:4
17
作者 Denghao Wu Yun Ren +2 位作者 Jiegang Mou Yunqing Gu Lanfang Jiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期127-141,共15页
Cavitation has a significant e ect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under ... Cavitation has a significant e ect on the flow fields and structural behaviors of a centrifugal pump. In this study, the unsteady flow and structural behaviors of a centrifugal pump are investigated numerically under di erent cavitation conditions. A strong two-way coupling fluid-structure interaction simulation is applied to obtain interior views of the e ects of cavitating bubbles on the flow and structural dynamics of a pump. The renormalization-group k-ε turbulence model and the Zwart–Gerbe–Belamri cavitation model are solved for the fluid side, while a transient structural dynamic analysis is employed for the structure side. The di erent cavitation states are mapped in the head-net positive suction head(H-NPSH) curves and flow field features inside the impeller are fully revealed. Results indicate that cavitating bubbles grow and expand rapidly with decreasing NPSH. In addition, the pressure fluctuations, both in the impeller and volute, are quantitatively analyzed and associated with the cavitation states. It is shown that influence of the cavitation on the flow field is critical, specifically in the super-cavitation state. The e ect of cavitation on the unsteady radial force and blade loads is also discussed. The results indicate that the averaged radial force increased from 8.5 N to 54.4 N in the transition progress from an onset cavitation state to a super-cavitation state. Furthermore, the structural behaviors, including blade deformation, stress, and natural frequencies, corresponding to the cavitation states are discussed. A large volume of cavitating bubbles weakens the fluid forces on the blade and decreases the natural frequencies of the rotor system. This study could enhance the understanding of the e ects of cavitation on pump flow and structural behaviors. 展开更多
关键词 CENTRIFUGAL PUMP CAVITATION unsteady flow Structural BEHAVIORS Fluid-structure interaction
下载PDF
Numerical simulation and analysis of solid-liquid two-phase threedimensional unsteady flow in centrifugal slurry pump 被引量:16
18
作者 吴波 汪西力 +1 位作者 LIU Hui 徐海良 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3008-3016,共9页
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of... Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump. 展开更多
关键词 slurry pump solid-liquid two-phase flow unsteady flow 3-D full passage numerical simulation
下载PDF
An application of interacting shear flows theory: exact solution for unsteady oblique stagnation point flow 被引量:4
19
作者 Guibo Li Minguo Dai Z. Gao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期397-402,共6页
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS... An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented. 展开更多
关键词 Navier-Stokes equations Interacting shear flows unsteady oblique stagnation point flow Exact solution
下载PDF
Analysis of Unsteady Flow over Offshore Wind Turbines in Combination with Different types of Foundations 被引量:3
20
作者 Israa Alesbe Moustafa Abdel-Maksoud Sattar Aljabair 《Journal of Marine Science and Application》 CSCD 2017年第2期199-207,共9页
Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)-panM... Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)-panMARE code-to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases. 展开更多
关键词 panel METHOD time domain OFFSHORE wind TURBINE RANSE SOLVER boundary element METHOD unsteady flow
下载PDF
上一页 1 2 149 下一页 到第
使用帮助 返回顶部