In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need t...In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need to apply various technologies for automation and control.This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices.One of the major protocols widely used today in industrial electronic devices is Modbus.However,data generated by Modbus devices cannot be understood by IoT applications using different protocols,so it should be applied in a couple with an IoT service layer platform.oneM2M,a global IoT standard,can play the role of interconnecting various protocols,as it provides flexible tools suitable for building an interworking framework for industrial services.Therefore,in this paper,we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards.In the proposed architecture,we introduce the way to model Modbus data as oneM2M resources,rules to map them to each other,procedures required to establish interoperable communication,and optimization methods for this architecture.We analyze our solution and provide an evaluation by implementing it based on a solar power management use case.The results demonstrate that our model is feasible and can be applied to real case scenarios.展开更多
Residual dipolar couplings(RDCs)are powerful nuclear magnetic resonance(NMR)probes for the structure calculation of biomacromolecules.Typically,an alignment tensor that defines the orientation of the entire molecule r...Residual dipolar couplings(RDCs)are powerful nuclear magnetic resonance(NMR)probes for the structure calculation of biomacromolecules.Typically,an alignment tensor that defines the orientation of the entire molecule relative to the magnetic field is determined either before refinement of individual bond vectors or simultaneously with this refinement.For single-domain proteins this approach works well since all bond vectors can be described within the same coordinate frame,which is given by the alignment tensor.However,novel approaches are sought after for systems where no universal alignment tensor can be used.Here,we present an approach that can be applied to two-domain proteins that enables the calculation of multiple states within each domain as well as with respect to the relative positions of the two domains.展开更多
基金the support of the Korea Research Foundation with the funding of the Ministry of Science and Information and Communication Technology(No.2018-0-88457,development of translucent solar cells and Internet of Things technology for Solar Signage).
文摘In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need to apply various technologies for automation and control.This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices.One of the major protocols widely used today in industrial electronic devices is Modbus.However,data generated by Modbus devices cannot be understood by IoT applications using different protocols,so it should be applied in a couple with an IoT service layer platform.oneM2M,a global IoT standard,can play the role of interconnecting various protocols,as it provides flexible tools suitable for building an interworking framework for industrial services.Therefore,in this paper,we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards.In the proposed architecture,we introduce the way to model Modbus data as oneM2M resources,rules to map them to each other,procedures required to establish interoperable communication,and optimization methods for this architecture.We analyze our solution and provide an evaluation by implementing it based on a solar power management use case.The results demonstrate that our model is feasible and can be applied to real case scenarios.
基金supported by NIH Grant R01GM130694-01A1,a start-up package by the University of Colorado to B.V.,University of Colorado Cancer Center Support Grant P30 CA046934NIH Biomedical Research Support Shared Grant S10 OD025020-01.
文摘Residual dipolar couplings(RDCs)are powerful nuclear magnetic resonance(NMR)probes for the structure calculation of biomacromolecules.Typically,an alignment tensor that defines the orientation of the entire molecule relative to the magnetic field is determined either before refinement of individual bond vectors or simultaneously with this refinement.For single-domain proteins this approach works well since all bond vectors can be described within the same coordinate frame,which is given by the alignment tensor.However,novel approaches are sought after for systems where no universal alignment tensor can be used.Here,we present an approach that can be applied to two-domain proteins that enables the calculation of multiple states within each domain as well as with respect to the relative positions of the two domains.