A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the ou...A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the outer frame, the optical fiber and wave guide are used to transmit these two kinds of signals to the rear part of the gyro, and the stator coils are used to get non contact angular measurement. Composite guiding, scanning, tracing and controlling can be achieved, the maximum tracing angular velocity can be as high as 16(°)/s.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and ...To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.展开更多
The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-F...The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-FOG is set up using phase modulation spectroscopy. First,the demodulation curve is obtained using a lock-in amplifier. From the demodulation signal,a gyro dynamic range of ± 4.2rad/s is obtained. Then,using different phase modulation frequencies,the open-loop gyro output signal is measured when the gyro is rotated clockwise or counterclockwise. The bias drift as a function of time is also measured. The fluctuation of the output over 5s is about 0.02rad/s. The drift can be reduced by taking countermeasures against system noise.展开更多
文摘A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the outer frame, the optical fiber and wave guide are used to transmit these two kinds of signals to the rear part of the gyro, and the stator coils are used to get non contact angular measurement. Composite guiding, scanning, tracing and controlling can be achieved, the maximum tracing angular velocity can be as high as 16(°)/s.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
基金Pre-Research Program of General Armament Departmentduring the11th Five-Year Plan Period(No.51309020503)the National De-fense Basic Research Program of China(973 Program)(No.973-61334)+1 种基金the National Natural Science Foundation of China(No.50575042)Specialized Research Fund for the Doctoral Program of Higher Education ( No.20050286026).
文摘To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.
文摘The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-FOG is set up using phase modulation spectroscopy. First,the demodulation curve is obtained using a lock-in amplifier. From the demodulation signal,a gyro dynamic range of ± 4.2rad/s is obtained. Then,using different phase modulation frequencies,the open-loop gyro output signal is measured when the gyro is rotated clockwise or counterclockwise. The bias drift as a function of time is also measured. The fluctuation of the output over 5s is about 0.02rad/s. The drift can be reduced by taking countermeasures against system noise.