期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Experimental Study and Numerical Simulation on Spray Characteristics of New-Type Air-Assist Nozzle 被引量:3
1
作者 Kun Liu Yonggang Yu Na Zhao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第1期34-40,共7页
To investigate the spray characteristics of a new-type air-assist nozzle,three-dimensional laser phase Dopper analyzer( PDA) was used to measure the spray parameters. The external flow fields of the nozzle were simula... To investigate the spray characteristics of a new-type air-assist nozzle,three-dimensional laser phase Dopper analyzer( PDA) was used to measure the spray parameters. The external flow fields of the nozzle were simulated by means of computational fluid dynamics( CFD). The distributions of the diameter and the axial velocity for the droplets were analyzed respectively. The results indicate that,the mean diameter of the droplets fluctuates along the center axis. The distance between the measurement point and the nozzle increases,the axial velocity of the droplets decreases. The further the measurement point from the center axis is,the smaller the axial velocity of the droplets is. With the increase of the nozzle pressure drop,the axial velocity of the droplets improves while the mean diameter of the droplets is reduced,and the distribution uniformity of the droplets is better for the diameter. The simulation result agrees well with the experimental data. The average deviation ranges from 3.9% to 7.7%. 展开更多
关键词 air-assist nozzle spray DROPLET numerical simulation
下载PDF
A General Strategy for Efficiently Constructing Multifunctional Cluster Fillers Using a Three-Fluid Nozzle Spray Drying Technique for Dental Restoration 被引量:1
2
作者 Dan-Lei Yang Dan Wang +5 位作者 Hao Niu Rui-Li Wang Mei Liu Fei-Min Zhang Jie-Xin Wang Mei-Fang Zhu 《Engineering》 SCIE EI 2022年第1期138-147,共10页
Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clu... Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clusters(CNCs)consisting of different functional nanofillers for dental restoration.The application of a three-fluid nozzle can effectively avoid the aggregation of different nanoparticles with opposite zeta potentials before the spray drying process in order to construct regularly shaped CNCs.For a SiO_(2)–ZrO_(2) binary system,the SiO_(2)–ZrO_(2) CNCs constructed using a three-fluid nozzle maintained their excellent mechanical properties((133.3±4.7)MPa,(8.8±0.5)GPa,(371.1±13.3)MPa,and(64.5±0.7)HV for flexural strength,flexural modulus,compressive strength,and hardness of DRCs,respectively),despite the introduction of ZrO_(2) nanoparticles,whereas their counterparts constructed using a two-fluid nozzle showed significantly decreased mechanical properties.Furthermore,heat treatment of the SiO_(2)-ZrO_(2) CNCs significantly improved the mechanical properties and radiopacity of the DRCs.The DRCs containing over 10%mass fraction ZrO_(2) nanoparticles can meet the requirement for radiopaque fillers.More importantly,this method can be expanded to ternary or quaternary systems.DRCs filled with SiO_(2)-ZrO_(2)-ZnO CNCs with a ratio of 56:10:4 displayed high antibacterial activity(antibacterial ratio>99%)in addition to excellent mechanical properties and radiopacity.Thus,the three-fluid nozzle spray drying technique holds great potential for the efficient construction of multifunctional cluster fillers for DRCs. 展开更多
关键词 Multifunctional cluster fillers Three-fluid nozzle spray drying Mechanical properties Antibacterial activity Radiopacity Dental resin composites
下载PDF
Injector Nozzle Flow Model and Its Effects on the Calculations of High Pressure Sprays
3
作者 WEIMing-rui LIUYong-chang +1 位作者 WENHua ZHANGYue-heng 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第4期483-488,共6页
This paper discusses the flowing process inside a nozzle, especially the formation mechanism of cavitations within the nozzle and puts forward a nozzle flow model, which takes account of the injection conditions and n... This paper discusses the flowing process inside a nozzle, especially the formation mechanism of cavitations within the nozzle and puts forward a nozzle flow model, which takes account of the injection conditions and nozzle geometry. By the model being implemented to the KIVA codes, the spray characteristics (e. g., spray penetration and cone angle) of diesel and dimethyl ether (DME) are simulated. The comparisons between the computational and experimental results are performed, which show that the liquid spray characteristics could be more truly demonstrated by considering the existence of the cavitations. Key words nozzle model - spray characteristics - cavitation - atomization CLC number O 35 - TK 402 Foundation item: Supported by the National Natural Science Foundation of China (50376018) and the National 973 Basic Research Program of China (2001CB209207)Biography: WEI Ming-rui (1967-), male, Associate professor, Ph. D, research direction: computational combustion, computational fluid dynamics. 展开更多
关键词 nozzle model spray characteristics CAVITATION ATOMIZATION
下载PDF
Experimental Study on Spray Cooling Performance of Pressure Atomizing Nozzle
4
作者 黄晓庆 张旭 《Transactions of Tianjin University》 EI CAS 2012年第3期231-235,共5页
Aiming at the problem of air-cooled condenser output limit, a spray humidification system was presented to reduce the inlet air temperature. The pressure atomizing nozzle TF8 was chosen for inlet air spray cooling, an... Aiming at the problem of air-cooled condenser output limit, a spray humidification system was presented to reduce the inlet air temperature. The pressure atomizing nozzle TF8 was chosen for inlet air spray cooling, and the spray cooling experiment with different layouts of nozzles were conducted. Through heat and mass transfer analysis, the cooling effect fitting correlation was acquired with evaporative cooling being the major cooling mechanism. The experimental results under different nozzle layouts show that when the product of dry ball and wet ball temperature difference and spray rate is smaller than 75 ~C-m3/h, opening the TF8 nozzles in row 1 and row 2 (row distance is 500 mm) has better cooling effect than those in row 1 and row 3 (row distance is 1 000 mm), while when the product is larger than 75 ~C'm3/h, opening the TF8 nozzles in row 1 and row 3 is superior in cooling effect to those in row 1 and row 2. 展开更多
关键词 pressure atomizing nozzle spray cooling fitting correlation nozzle layout
下载PDF
Nozzle Spray Diffusivity Changing Law for Ultra Fast Cooling in Hot Strip Mill
5
作者 江连运 赵春江 +2 位作者 石建辉 吴迪 王国栋 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期583-587,共5页
Slot nozzle and intensive nozzle can be used in ultra fast cooling equipment. The spray cooling method with higher water pressure can be taken in order to achieve ultra fast cooling for hot rolled strip. Water will be... Slot nozzle and intensive nozzle can be used in ultra fast cooling equipment. The spray cooling method with higher water pressure can be taken in order to achieve ultra fast cooling for hot rolled strip. Water will be diffused after it is sprayed out from ultra fast cooling nozzle. Spray diffusivity will affect water velocity and penetrability of water into residual water layer on top of the strip,and then it will affect strip cooling effect. Water spraying process can be simulated by Fluent and some conclusions were obtained. Slot nozzle width and outlet velocity within setting range could not affect the length of potential core zone and the spray diffusivity. Intensive nozzle diameter and outlet velocity will affect the length of potential core zone and the spray diffusivity with different extent. These conclusions will provide referenced role for confirming ultra fast cooling nozzle size and distance between ultra fast cooling nozzle and hot rolled strip. 展开更多
关键词 ultra-fast cooling slot nozzle intensive nozzle spray diffusivity
下载PDF
Low porosity and fine coatings produced by a new type nozzle of high velocity arc spray gun
6
作者 汪瑞军 张天剑 +1 位作者 徐林 黄小鸥 《China Welding》 EI CAS 2006年第3期51-54,共4页
The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity. This system ... The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity. This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires). Using the scanning electron microscope ( SEM ) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic (ESA) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lameUarsplat structure and the average lamellar thickness is around 5μm. 展开更多
关键词 twin wire arc spray nozzles structure coatings structure porosity OXIDES
下载PDF
Spray Characteristics of Non-Circular Nozzle in Air-Assisted Injection System
7
作者 Lihua Ye Wenjing Liu +1 位作者 Jie Li Aiping Shi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期61-72,共12页
In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-... In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-0.6 MPa and the spray volume of 1000-5000 mL/h. Elliptical nozzle and triangular nozzle are classified as non-circular geometries. The spray cone angle was measured by processing the spray image captured by a CCD camera. The measured spray cone angles of the circular nozzles were analyzed, and the axis switching phenomenon of minor plane of elliptical nozzle was found during the test. Among the three shapes of nozzles, the elliptical nozzle had the largest spray cone angle, and the triangular nozzle had the smallest. The velocity field obtained depended on the PIV system. The results show that for axial velocity, elliptical orifice spray has greater kinetic energy and smaller droplet size under the same working parameters. Compared with the circular and elliptical nozzles, triangular orifice reached maximum spray velocity the fastest, but its velocity decay was the fastest. For radial velocity, away from the axis, the spray velocity of the elliptical orifice was less affected by the injection parameters, and the velocity was less than that of circular orifice and triangle orifice. Increasing air pressure will weaken radial propagation. The increase of liquid spraying rate had no remarkable effect on the increase of spraying rate. The results of particle size analysis show that the particle size of the non-circular orifice is reduced compared with that of the circular orifice, which promotes the breakup of droplets to a certain extent and enhances the atomization effect. 展开更多
关键词 non-circular nozzle air-assisted injection system PIV spray cone angle velocity field
下载PDF
Effect of Intake Conditions and Nozzle Geometry on Spray Characteristics of Group-Hole Nozzle
8
作者 Jianfeng Pan Jinpeng Hua +1 位作者 Jiaqi Yao Abiodun Oluwaleke Ojo 《Energy Engineering》 EI 2023年第7期1541-1562,共22页
The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of i... The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Therefore,in this study,an accurate spray model coupled with the internal cavitating flow was established and computational fluid dynamics(CFD)simulations were done to study the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Experimental data obtained using high-speed digital camera on the high-pressure common rail injection system was used to validate the numerical model.Effects of intake conditions(injection pressure and temperature)and nozzle geometry(orifice entrance curvature radius and nozzle length)on the flow and spray characteristics of the group-hole nozzle were studied numerically.The differences in Sauter mean diameter(SMD),penetration length and fuel evaporation mass between single-hole nozzle and group-hole nozzle under different nozzle geometry were also discussed.It was found that the atomization performance of the group-hole nozzle was better than that of the single-hole nozzle under same intake conditions,and the atomization effect of the short nozzle was better than that of the long nozzle.With increase in the orifice entrance curvature radius,the average velocity and turbulent kinetic energy of the fuel increased,which was conducive to improving the injection rate and flow coefficient of the nozzle.Meanwhile,the penetration length and SMD value rose,while evaporation mass dropped.When the ratio of the orifice entrance curvature radius(R)to the diameter of injection hole(D)was 0.12,the spray characteristics reached a constant state due to elimination of cavitation.Conclusions were made based on these.This study is expected to be a guide for the design of the group-hole nozzle. 展开更多
关键词 DIESEL spray characteristics group-hole nozzle coupling model
下载PDF
Study on the Relationship of Spray Rate to Air Pressure and Gravity Drop of Siphonic Nozzle
9
作者 Xianyan SU Xuexiang REN +2 位作者 Weiwei HE Fei HU Zhenghe YE 《Agricultural Science & Technology》 CAS 2017年第10期1960-1962,共3页
In order to further clarify the spraying performance of siphonic nozzle, the spray rate of siponic cone nozzle with aperture of 1.0 mm was determined at 15 different air pressure levels and 12 gravity drop levels, and... In order to further clarify the spraying performance of siphonic nozzle, the spray rate of siponic cone nozzle with aperture of 1.0 mm was determined at 15 different air pressure levels and 12 gravity drop levels, and DPS and SPSS were used to make the difference analysis and modeling, which clarified the relationship between the spray rate of the siphonic cone nozzle with aperture of 1.0 mm and air pressure and gravity drop, getting the regression equation of Y=406.854P+ 1.904G+77.524. The study could provide a theoretical basis for the optimization and improvement of plant protection spraying equipment. 展开更多
关键词 Siphonic nozzle spray rate Air pressure Gravity drop
下载PDF
Continuing Results for Effervescent Aerosol Salt Water Spray Nozzles Intended for Marine Cloud Brightening
10
作者 Jack Foster Gary Cooper +3 位作者 Lee Galbrath Sudhanshu Jain Robert Ormond Armand Neukermans 《International Journal of Geosciences》 2020年第9期563-589,共27页
Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixin... Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixing tee nozzle described earlier had occasional unstable slug flow. A new design that adding rotational swirl to the salt brine as it is mixed into the air stabilized the nozzle flow and no longer showed slug flow in spray pictures. Flow equations were developed for the relatively low speed of sound of a choked flow mixed brine and air nozzle. Experimental mixed flow measurements with 300b pressure and a 200 μm diameter nozzle and calculations using perfect gas, and isotropic processes equations compared well with the chocked flow equations. Analysis in EXCEL of particle sizers measurements from both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) showed production of many nanometer sized particles estimated as usable for MCB. A small number of micron sized particles were also always present but with about 90% of the sprayed mass. This is a first report with good data over the complete size range. The micron sized particles measured were similar to the measurements of earlier reports which reported no nanometer sized particles. We hypothesize that many nano-particles are always produced by liquid-air effervescent sprays, but earlier, were not observed because SMPS instruments were not available. The presence of the large mass percentage of large particles in the spray may cause problems by evaporative cooling preventing the rise of the MCB particles. We suggest future systems design with an impactor filter to remove the large particles. Calculations combining increased brine concentration, lower pressure, and larger nozzle area showed that significant reductions in required power and number of nozzles could be realized. An EXCEL model is developed to calculate flow from experimental analysis equations and compare with mixed choked flow equations. Solving with the model predicted the power required and the number of nozzles required to produce 10<sup>15</sup> particles/s. The model showed that increasing brine concentration strongly lowered total power. Lowering pressure decreased power and increased number of nozzles. Increasing nozzle area lowered the number of nozzles. This model predicted that, at 300b pressure and 200μm diameter nozzle as the experiment but using an increased brine concentration of 0.1 instead of 0.032 would require only 115 nozzles instead of 358 and power of 146 kw instead of 493 kw. Combining increased brine concentration, lower pressure, and larger nozzle area, the model predicted that with a 1 mm diameter nozzle at 30b pressure and salt concentration of 0.2, the nozzle count and power required would drop to only 24 nozzles and power of 28 kw. Whether extending the model to these conditions is valid is not known but suggests further development should be investigated. Filtering out and reusing the 90% or greater large particles mass sprayed combined with the lower power advantage of higher brine concentration is suggested for future systems. 展开更多
关键词 Marine Cloud Brightening Global Warming Effervescent spray nozzles Salt Nano-Particles
下载PDF
Design and Atomization Characteristic of Laval-style Annular Slot Nozzle 被引量:3
11
作者 Chao-Run Si Xian-Jie Zhang +1 位作者 Jun-Biao Wang Yu-Jun Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期40-47,共8页
Gas mass flux rate,metal mass flux rate and outlet gas velocity are three atomization scale parameters which greatly affect the atomization efficiency. A Laval-style annual slot supersonic nozzle is designed by optimi... Gas mass flux rate,metal mass flux rate and outlet gas velocity are three atomization scale parameters which greatly affect the atomization efficiency. A Laval-style annual slot supersonic nozzle is designed by optimizing the geometric parameters of delivery tube outlet and gas outlet to obtain applicable atomization scale parameters. A computational fluid flow model is adopted to investigate the effect of atomization gas pressure ( P0 ) on the gas flow field in gas atomization progress. The numerical results show that the outlet gas velocity of the nozzle is not affected by P0 and the maximum gas velocity reaches 452 m / s. The alternation of aspiration pressure ( ΔP) is caused by the variations of stagnation pressure and location of Mach shock disk, and hardly by the location of stagnation point. The aspiration pressure is found to decrease as P0 increases when P0 < 1. 3 MPa. However,at a higher atomization gas pressure increasing P0 causes an opposite: the aspiration pressure atomization increases with the gas pressure,and keeps a plateau when P0 > 2. 0 MPa. The minimum aspiration pressure ΔP = - 70 kPa is obtained at P0 = 1. 3 MPa. The results indicate that the designed Laval- style annual slot nozzle has well atomization characteristic at lower atomization pressure. 展开更多
关键词 spray forming gas atomization laval nozzle annular slot nozzle
下载PDF
Investigations of the effects of two typical jet crushing methods on the atomization and dust reduction performance of nozzles 被引量:2
12
作者 Han Han Hetang Wang +3 位作者 Qi Zhang Yunhe Du Haojie Wang Hui Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期92-106,共15页
Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control e... Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control efciency at the coal mining faces, the atomization characteristics and dust reduction performance of the two nozzles were quantitatively compared. Results of experiments show that, as water supply pressure increased, the atomization angle of the swirl pressure nozzle reaches a maximum of 62° at 6 MPa and then decreases, but its droplet size shows an opposite trend with a minimum of 41.7 μm. The water supply pressure helps to improve the droplet size and the atomization angle of the internal mixing air–liquid nozzle, while the air supply pressure has a suppressive efect for them. When the water supply pressure is 0.2 MPa and the air supply pressure reaches 0.4 MPa, the nozzle obtains the smallest droplet size which is 10% smaller than the swirl pressure nozzle. Combined with the dust reduction experimental results, when the water consumption at the working surface is not limited, using the swirl pressure nozzle will achieve a better dust reduction efect. However, the internal mixing air–liquid nozzle can achieve better and more economical dust reduction performance in working environments where water consumption is limited. 展开更多
关键词 Dust control spray nozzle Atomization characteristics Dust reduction performance
下载PDF
Resonant behaviors of ultra-sonic gas atomization nozzle with zero mass-flux jet actuator 被引量:2
13
作者 祖洪彪 王志亮 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期166-172,共7页
The resonant behaviors of an ultra-sonic gas atomization nozzle with a zero mass-flux jet actuator were numerically investigated with FLUENT software by using a double precision unsteady two-dimensional pressure-based... The resonant behaviors of an ultra-sonic gas atomization nozzle with a zero mass-flux jet actuator were numerically investigated with FLUENT software by using a double precision unsteady two-dimensional pressure-based solver. The Spalart-Allmaras turbulence model was adopted in the simulations. Numerical results indicated that the oscillation properties of the gas efflux were effectively improved. Several resonatory frequencies corresponding to different vibration modes of gas were distinguished in the nozzle. With the changing of nozzle geometric parameters, different characters among those modes were elucidated by analyzing the propagations of pressure waves. 展开更多
关键词 spray atomization ultra-sonic gas atomization nozzle resonance numerical simulation
下载PDF
Prediction of atomization characteristics of pressure swirl nozzle with different structures 被引量:1
14
作者 Jinfan Liu Xin Feng +4 位作者 Hu Liang Weipeng Zhang Yuanyuan Hui Haohan Xu Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期171-184,共14页
The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment... The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment,10 nozzles with different structures are designed to comprehensively cover various geometric factors.In terms of simulation,steady-state simulation with less computational complexity is used to study the flow inside the nozzle.The results show that the diameter of the inlet and outlet,the direction of the inlet,the diameter of the swirl chamber,and the height of the swirl chamber all affect the atomization performance,and the diameter of the inlet and outlet has a greater impact.It is found that under the same flow rate and pressure,the geometric differences do have a significant impact on the atomization characteristics,such as spray angle and SMD(Sauter mean diameter).Specific nozzle structures can be customized according to the actual needs.Data analysis shows that the spray angle is related to the swirl number,and the SMD is related to turbulent kinetic energy.Through data fitting,the equations for predicting the spray angle and the SMD are obtained.The error range of the fitting equation for the prediction of spray angle and SMD is within 15% and 10% respectively.The prediction is expected to be used in engineering to estimate the spray performance at the beginning of a real project. 展开更多
关键词 Pressure swirl nozzle nozzle structure Numerical simulation spray angle PREDICTION
下载PDF
Effects of atomization parameters of dust removal nozzles on the de-dusting results for different dust sources 被引量:7
15
作者 Cheng Weimin Ma Youying +1 位作者 Yang Junlei Sun Biao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1025-1032,共8页
In order to obtain appropriate spray pressure and enhance the spraying and dust removal efficiency, various factors including the dust characteristics, nozzle spraying angle, effective spraying range, water consumptio... In order to obtain appropriate spray pressure and enhance the spraying and dust removal efficiency, various factors including the dust characteristics, nozzle spraying angle, effective spraying range, water consumption and droplet size are taken into account. The dust characteristics from different mines and atomization parameters of different pressure nozzles were measured. It was found that the internal pressure of coal cutters and roadheaders should be kept at 2 MPa, which could ensure large droplet size, large spraying angle and low water consumption and hence realizing a large-area covering and capture for large particle dusts. However, the external spray pressure should be kept at 4 MPa for smaller droplet size and longer effective spraying range, leading to effective dust removal in the operator zone. The spray pressure of support moving, drawing opening, and stage loader on a fully mechanized caving face and stage loader on a fully mechanized driving face should be kept at 8 MPa, under which the nozzles have long effective spraying range, high water flow and small droplet size for the rapid capture of instantaneous, high-concentration and small size dust groups. From the applications on the caving and driving faces in the coal mines, it is indicated that the optimization of spray pressure in different spraying positions could effectively enhance dust removal efficiency. Selecting appropriate nozzles according to the dust characteristics at different positions is also favorable for dust removal efficiency. With the selected nozzles under optimal pressures, the removal rates of both total dust and respirable dust could reach over70%, showing a significant de-dusting effect. 展开更多
关键词 Dust sources Dust size Types of spraying nozzle spray pressure Atomization parameters
下载PDF
The Influences of the Nozzle Throat Length and the Orifice Grooving Degree on Internal Flow Field for a Multi-Entry Fan Nozzle Based on FLUENT 被引量:1
16
作者 Wei Deng Ruirui Zhang +3 位作者 Gang Xu Longlong Li Qin Tang Min Xu 《Engineering(科研)》 2019年第11期777-790,共14页
Spray nozzle is a key component in equipment for plant protection and water-saving irrigation. The fan nozzle is a kind of spray nozzle, which is widely used in agriculture and forestry for irrigation and control of d... Spray nozzle is a key component in equipment for plant protection and water-saving irrigation. The fan nozzle is a kind of spray nozzle, which is widely used in agriculture and forestry for irrigation and control of diseases, insects, and weeds. In consideration of the increasing velocity of the flow field, when the hydraulic pressure remains unchanged and the flow path becomes narrow, and because the increase of the velocity of spray drops can increase the penetrability of spray drops into the plant canopy, a kind of new fan nozzle with multi entries and simple inner structure was designed and the influences of its structure parameters on the inner flow field were analyzed using FLUENT software. The experimental results showed that the influence of the throat length on the inner flow field of the nozzle was insignificant, while the orifice grooving degree had a significant effect on inner flow field of the nozzle. The larger the grooving degree was, the smaller the pressure and velocity of internal flow field of the nozzle. The nozzle throat length had little influence on the velocity change of internal flow field. Positive correlation was shown between throat length and flow field velocity. 展开更多
关键词 FAN nozzle ORIFICE spray FLUENT Multi-Entry Inner Flow Field
下载PDF
Properties of acoustic resonance in double-actuator ultra-sonic gas nozzle:numerical study
17
作者 祖洪彪 周哲玮 王志亮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第12期1481-1492,共12页
The ultra-sonic gas atomization (USGA) nozzle is an important apparatus in the metal liquid air-blast atomization process. It can generate oscillating supersonic gas effiux, which is proved to be effective to enforc... The ultra-sonic gas atomization (USGA) nozzle is an important apparatus in the metal liquid air-blast atomization process. It can generate oscillating supersonic gas effiux, which is proved to be effective to enforce the atomization and produce narrow-band particle distributions. A double-actuator ultra-sonic gas nozzle is proposed in the present paper by joining up two active signals at the ends of the resonance tubes. Numerical sim- ulations axe adopted to study the effects of the flow development on the acoustic resonant properties inside the Haxtmann resonance cavity with/without actuators. Comparisons show that the strength and the onset process of oscillation are enhanced remarkably with the actuators. The multiple oscillating amplitude peaks are found on the response curves, and two kinds of typical behaviors, i.e., the Hartmann mode and the global mode, are discussed for the corresponding frequencies. The results for two driving actuators are also investigated. When the amplitudes, the frequencies, or the phase difference of the input signals of the actuators are changed, the oscillating amplitudes of gas effiux can be altered effectively. 展开更多
关键词 spray atomization ultra-sonic gas nozzle resonance numerical simulation
下载PDF
An experimental study on the atomization characteristics of the nozzle for the after-pot cooling of galvanized steel sheets
18
作者 LIU Huafei1),XIANG Shunhua2)and MA Xinjian2)1)Auto Steel Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China2)Equipment Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第4期50-53,共4页
Air-atomized fog cooling is particularly suitable for the after-pot cooling of galvanized steel strips.With air and water serving as working media,an experimental study was conducted on the atomization characteristics... Air-atomized fog cooling is particularly suitable for the after-pot cooling of galvanized steel strips.With air and water serving as working media,an experimental study was conducted on the atomization characteristics of a newly-developed cross-flow type of fog nozzles.The water flux distribution,spray angle and pressure of water and air were measured.The results show that the water droplet size was small and insensitive to the water flow rate.The spray angle was small and the water flow rate slightly affected the air pressure in the chamber.An empirical correlation between the pressure in the chamber and the gas flow rate was obtained for the purpose of equipment design. 展开更多
关键词 air-atomizing nozzle atomization characteristics spray angle
下载PDF
Evaluation of a Pulse Width Modulated Bypass Nozzle for the Development of a Variable Load Residential Oil Burner
19
作者 Mebougna L. Drabo Narinder K. Tutu +2 位作者 Thomas Butcher George Wei Rebecca Trojanowski 《Engineering(科研)》 2018年第10期643-654,共12页
Due to the need for energy conservation in buildings and the simultaneous benefit of cost savings, the development of a low firing rate load modulating residential oil burner is very desirable. One of the two main req... Due to the need for energy conservation in buildings and the simultaneous benefit of cost savings, the development of a low firing rate load modulating residential oil burner is very desirable. One of the two main requirements of such a burner is the development of a burner nozzle that is able to maintain the particle size distribution of the fuel spray in the desirable (small) size range for efficient and stable combustion. The other being the ability to vary the air flow rate and air distribution around the fuel nozzle in the burner for optimal combustion at the current fuel firing rate. In this paper, which deals with the first requirement, we show that by using pulse width modulation in the bypass channel of a commercial off-the-shelf bypass nozzle, this objective can be met. Here we present results of spray patterns and particle size distribution for a range of fuel firing rates. The results show that a desirable fuel spray pattern can be maintained over a fuel firing rate turndown ratio (Maximum Fuel Flow Rate/Minimum Fuel Flow Rate) of 3.7. Thus here we successfully demonstrate the ability to electronically vary the fuel firing rate by more than a factor of 3 while simultaneously maintaining good atomization. 展开更多
关键词 RESIDENTIAL Oil BURNER VARIABLE Load Pulse Width Modulated BURNER nozzle BYPASS nozzle Droplet spray Size Distribution VARIABLE Fuel FIRING Rate
下载PDF
Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower
20
作者 Kaiyong Hu Zhaoyi Chen +4 位作者 Yunqing Hu Huan Sun Zhili Sun Tonghua Zou Jinghong Ning 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2109-2126,共18页
The current study focuses on spray cooling applied to the heat exchange components of a cooling tower.An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes.For simpli... The current study focuses on spray cooling applied to the heat exchange components of a cooling tower.An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes.For simplicity,the heat exchanger of the cooling tower is modeled as a horizontal round tube and a cooling tower spray cooling model is developed accordingly using a computational fluid dynamics(CFD)software.The study examines the influence of varying spray flow rates and droplet sizes on the heat flow intensity between the liquid layer on the surface of the cylindrical tube and the surrounding air,taking into account the number of nozzles.It is observed that on increasing the spray flow strength,the heat flow intensity and extent of the liquid film in the system are enhanced accordingly.Moreover,the magnitude of droplet size significantly impacts heat transfer.A larger droplet size decreases evaporation in the air and enhances the deposition of droplets on the round tube.This facilitates the creation of the liquid film and enhances the passage of heat between the liquid film and air.Increasing the number of nozzles,while maintaining a constant spray flow rate,results in a decrease in the flow rate of each individual nozzle.This decrease is not favorable in terms of heat transfer. 展开更多
关键词 spray cooling droplet sizes number of nozzles CFD
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部