Herein, we show that a self-assembled phase of potassium(K)-doped single-layer para-sexiphenyl(PSP) film on a gold substrate is an excellent platform for studying the two-impurity Kondo model. On K-doped PSP molecules...Herein, we show that a self-assembled phase of potassium(K)-doped single-layer para-sexiphenyl(PSP) film on a gold substrate is an excellent platform for studying the two-impurity Kondo model. On K-doped PSP molecules well separated from others, we observe a Kondo resonance peak close to EFwith a Kondo temperature of 30 K. The Kondo resonance peak splits when another K-doped PSP molecule is present in the vicinity, and the splitting gradually increases with the decrease in intermolecular distance without signs of phase transition. Our data demonstrate how a Kondo singlet state gradually evolves into an antiferromagnetic singlet state due to the competition between Kondo screening and antiferromagnetic Ruderman-Kittel-Kasuya-Yosida coupling,as described in the two-impurity Kondo model. Intriguingly, the antiferromagnetic singlet is quickly destroyed on increasing temperature and transforms back to a Kondo singlet below the Kondo temperature. Our data provide a comprehensive picture and quantitative constraints on related theories and calculations of the two-impurity Kondo model.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2017YFA0303004,and 2017YFA0303104)the National Natural Science Foundation of China(Grant No.11774060)+2 种基金the Science Challenge Project(Grant No.TZ2016004)the Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Chenguang Program)the Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)。
文摘Herein, we show that a self-assembled phase of potassium(K)-doped single-layer para-sexiphenyl(PSP) film on a gold substrate is an excellent platform for studying the two-impurity Kondo model. On K-doped PSP molecules well separated from others, we observe a Kondo resonance peak close to EFwith a Kondo temperature of 30 K. The Kondo resonance peak splits when another K-doped PSP molecule is present in the vicinity, and the splitting gradually increases with the decrease in intermolecular distance without signs of phase transition. Our data demonstrate how a Kondo singlet state gradually evolves into an antiferromagnetic singlet state due to the competition between Kondo screening and antiferromagnetic Ruderman-Kittel-Kasuya-Yosida coupling,as described in the two-impurity Kondo model. Intriguingly, the antiferromagnetic singlet is quickly destroyed on increasing temperature and transforms back to a Kondo singlet below the Kondo temperature. Our data provide a comprehensive picture and quantitative constraints on related theories and calculations of the two-impurity Kondo model.