This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg...This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
This paper deals with the problem of synchronization for a class of uncertain chaotic systems. The uncertainties under consideration are assumed to be Lipschitz-like nonlinearity in tracking error, with unknown growth...This paper deals with the problem of synchronization for a class of uncertain chaotic systems. The uncertainties under consideration are assumed to be Lipschitz-like nonlinearity in tracking error, with unknown growth rate. A logic-based switching mechanism is presented for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Based on the Lyapunov approach, the adaptation law is determined to tune the controller gain vector online according to the possible nonlinearities. To demonstrate the efficiency of the proposed scheme, the well-known chaotic system namely Chua's circuit is considered as an illustrative example.展开更多
Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a ne...Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy.展开更多
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators...In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.展开更多
The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the w...The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.展开更多
In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the p...In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.展开更多
According to the basic functions and objectives of Cognitive Radio (CR) systems, the cognition-based adaptive control mechanism is the generalization of the research contents and approaches of cognitive radio systems....According to the basic functions and objectives of Cognitive Radio (CR) systems, the cognition-based adaptive control mechanism is the generalization of the research contents and approaches of cognitive radio systems. Therefore, the mechanism is described by a cognition loop, which contains the following parts: environment, inner structure of intelligent systems, observation and action.展开更多
One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweig...One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweight. In this paper, a hand prosthesis with an under-actuated and self-adaptive finger mechanism is proposed. The proposed finger is capable to generate passively different flexion/extension angles for a proximal interphalangeal (PIP) joint and a distal interphalangeal (DIP) joint for each flexion angle of metacarpophalangeal (MCP) joint. In addition, DIP joint is capable to generate different angles for the same angle of PIP joint. Hand prosthesis is built on the proposed finger mechanism. The hand prosthesis enables user to grasp objects with various geometries by performing five grasping patterns. Thumb of the hand prosthesis includes opposition/apposition in addition to flexion/extension of MCP and interphalangeal (IP) joint. Kinematic analysis of the proposed finger has been carried out to verify the movable range of the joints. Simulations and experiments are carried out to verify the effectiveness of the proposed finger mechanism and the hand prosthesis.展开更多
Based on detail analysis of clutch engaging process control targets and adaptive demands, a control strategy which is based on speed signal, different from that of based on main clutch displacement signal, is put forw...Based on detail analysis of clutch engaging process control targets and adaptive demands, a control strategy which is based on speed signal, different from that of based on main clutch displacement signal, is put forward. It considers both jerk and slipping work which are the most commonly used quality evaluating indexes of vehicle starting phase. The adaptive control system and its reference model are discussed profoundly. Taking the adaptability to different starting gears and different road conditions as examples, some proving field test records are shown to illustrate the main clutch adaptive control strategy at starting phase. Proving field test gives acceptable results.展开更多
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic...Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.展开更多
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number...In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.展开更多
Saussurea medusa,Saussurea hypsipeta and Saussurea obvallata are typical alpine snowline plants growing in the Qinghai-Tibet plateau.They are characterized by a specialized morphology.S.medusa and S.hypsipeta have ver...Saussurea medusa,Saussurea hypsipeta and Saussurea obvallata are typical alpine snowline plants growing in the Qinghai-Tibet plateau.They are characterized by a specialized morphology.S.medusa and S.hypsipeta have very dense trichomes on whole plant,whereas S.obvallata has transparent bracts covered inflorescences.The different forms reflect their adaptation to cold environments.To investigate the different mechanisms of adaptation of these species to cold temperatures,transcriptome sequencing was performed in three species of Saussurea DC.A total of 116394137237 and 113879 Unigenes were identified from S.medusa,S.hypsipeta and S.obvallata,respectively.Of these,55909(48.03%),65519(47.74%)and 51889(45.56%)Unigenes were matched in public databases.GO analysis identified that most of annotated Unigenes in the three species of plants were related to cellular,metabolic,and single−organism processes,and binding and catalytic activities.The differential expression of 37 genes related to environmental adaptation were discovered by pairwise comparisons.Of these,two candidate genes(Interaptin-like and CSLB3)related to trichome development were identified only in S.medusa and S.hypsipeta,which was consistent with their distinct morphology.Our data can provide a valuable resource for the further studies on the adaptive mechanisms of molecular and functional ecology in Saussurea DC.展开更多
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul...This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.展开更多
This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dy...This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach.展开更多
In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupli...In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.展开更多
In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control...In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling...This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling error, initial condition deviation, friction force and other unknown external disturbances always exist in a LLRR system. So, it is necessary to consider the uncertainties in the unilateral man-machine dynamical model of the LLRR we described. In the dynamical model, uncertainties are(possibly fast) time-varying and bounded. However, the bounds are unknown. Based on the dynamical model, we design an adaptive robust control with an adaptive law that is leakagetype based and on the framework of Udwadia-Kalaba theory to compensate for the uncertainties and to realize tracking control of the LLRR. Furthermore, the effectiveness of designed control is shown with numerical simulations.展开更多
基金supported in part by the National Key R&D Program of China under Grant 2021YFB2011300the National Natural Science Foundation of China under Grant 52075262。
文摘This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60974004)
文摘This paper deals with the problem of synchronization for a class of uncertain chaotic systems. The uncertainties under consideration are assumed to be Lipschitz-like nonlinearity in tracking error, with unknown growth rate. A logic-based switching mechanism is presented for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Based on the Lyapunov approach, the adaptation law is determined to tune the controller gain vector online according to the possible nonlinearities. To demonstrate the efficiency of the proposed scheme, the well-known chaotic system namely Chua's circuit is considered as an illustrative example.
基金supported in part by the National Natural Science Foundation of China(62273112,62061160371,61933001,51905115)the Science and Technology Planning Project of Guangzhou City(202201010758)+2 种基金the Guangzhou University-Hong Kong University of Science and Technology Joint Research Collaboration Fund(YH202205)the Open Research Fund from the Guangdong Laboratory of Artificial Intelligence and Digital Economy(Shenzhen(SZ))(GML-KF-22-27)the Korea Institute of Energy Technology Evaluation and Planning Through the Auspices of the Ministry of Trade,Industry and Energy,Republic of Korea(20213030020160)。
文摘Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy.
基金the Vietnam National Foundation for Science and Technology Development(NAFOSTED)Vietnam under Grant No.(107.01-2019.311).
文摘In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.
文摘The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.
基金the National Natural Science Foundation of China(61563032,61963025)The Open Foundation of the Key Laboratory of Gansu Advanced Control for Industrial Processes(2019KX01)The Project of Industrial support and guidance of Colleges and Universities in Gansu Province(2019C05).
文摘In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.
基金supported by the National High Technology Research and Development Program ("863" Program) of China under Grant No. 2007AA01Z209the National Basic Research Program of China under Grant No. 2009CB320405.
文摘According to the basic functions and objectives of Cognitive Radio (CR) systems, the cognition-based adaptive control mechanism is the generalization of the research contents and approaches of cognitive radio systems. Therefore, the mechanism is described by a cognition loop, which contains the following parts: environment, inner structure of intelligent systems, observation and action.
文摘One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweight. In this paper, a hand prosthesis with an under-actuated and self-adaptive finger mechanism is proposed. The proposed finger is capable to generate passively different flexion/extension angles for a proximal interphalangeal (PIP) joint and a distal interphalangeal (DIP) joint for each flexion angle of metacarpophalangeal (MCP) joint. In addition, DIP joint is capable to generate different angles for the same angle of PIP joint. Hand prosthesis is built on the proposed finger mechanism. The hand prosthesis enables user to grasp objects with various geometries by performing five grasping patterns. Thumb of the hand prosthesis includes opposition/apposition in addition to flexion/extension of MCP and interphalangeal (IP) joint. Kinematic analysis of the proposed finger has been carried out to verify the movable range of the joints. Simulations and experiments are carried out to verify the effectiveness of the proposed finger mechanism and the hand prosthesis.
文摘Based on detail analysis of clutch engaging process control targets and adaptive demands, a control strategy which is based on speed signal, different from that of based on main clutch displacement signal, is put forward. It considers both jerk and slipping work which are the most commonly used quality evaluating indexes of vehicle starting phase. The adaptive control system and its reference model are discussed profoundly. Taking the adaptability to different starting gears and different road conditions as examples, some proving field test records are shown to illustrate the main clutch adaptive control strategy at starting phase. Proving field test gives acceptable results.
基金supported by the National Natural Science Foundation of China (No.50609028)
文摘Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock.
基金supported in part by the National Key Research and Development Program of China(2018YFA0702200)the National Natural Science Foundation of China(52377079,62203097,62373196)。
文摘In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.
基金supported in part by National Natural Science Foundation of China(61573108,61273192,61333013)the Ministry of Education of New Century Excellent Talent(NCET-12-0637)+1 种基金Natural Science Foundation of Guangdong Province through the Science Fund for Distinguished Young Scholars(S20120011437)Doctoral Fund of Ministry of Education of China(20124420130001)
基金the National Natural Science Foundation of China(31960222,31360095).
文摘Saussurea medusa,Saussurea hypsipeta and Saussurea obvallata are typical alpine snowline plants growing in the Qinghai-Tibet plateau.They are characterized by a specialized morphology.S.medusa and S.hypsipeta have very dense trichomes on whole plant,whereas S.obvallata has transparent bracts covered inflorescences.The different forms reflect their adaptation to cold environments.To investigate the different mechanisms of adaptation of these species to cold temperatures,transcriptome sequencing was performed in three species of Saussurea DC.A total of 116394137237 and 113879 Unigenes were identified from S.medusa,S.hypsipeta and S.obvallata,respectively.Of these,55909(48.03%),65519(47.74%)and 51889(45.56%)Unigenes were matched in public databases.GO analysis identified that most of annotated Unigenes in the three species of plants were related to cellular,metabolic,and single−organism processes,and binding and catalytic activities.The differential expression of 37 genes related to environmental adaptation were discovered by pairwise comparisons.Of these,two candidate genes(Interaptin-like and CSLB3)related to trichome development were identified only in S.medusa and S.hypsipeta,which was consistent with their distinct morphology.Our data can provide a valuable resource for the further studies on the adaptive mechanisms of molecular and functional ecology in Saussurea DC.
文摘This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61273150 and 60974046)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20121101110029)
文摘This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach.
文摘In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.
基金Project supported by the Natural Science Foundation of Yangzhou University of China (Grant No KK0513109).
文摘In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
基金supported by the National Natural Science Foundation of China(51505116)the Fundamental Research Funds for the Central Universities(JZ2016HGTB0716)+2 种基金Natural and Science Foundation of Anhui Province(1508085SME221)China Postdoctoral Science Foundation(2016M590563)the Science and Technology Public Relations Project of Anhui Province(1604a0902181)
文摘This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling error, initial condition deviation, friction force and other unknown external disturbances always exist in a LLRR system. So, it is necessary to consider the uncertainties in the unilateral man-machine dynamical model of the LLRR we described. In the dynamical model, uncertainties are(possibly fast) time-varying and bounded. However, the bounds are unknown. Based on the dynamical model, we design an adaptive robust control with an adaptive law that is leakagetype based and on the framework of Udwadia-Kalaba theory to compensate for the uncertainties and to realize tracking control of the LLRR. Furthermore, the effectiveness of designed control is shown with numerical simulations.