Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib...This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’...This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.展开更多
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra...To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit.展开更多
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne...One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.展开更多
The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study th...The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.展开更多
In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite netw...In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission.展开更多
The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that ...The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that the PZT(piezoelectric)layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer.This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid.It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of the hydro-elasto-piezoelectric system is studied.Another value of the present work is the use of the exact equations and relations of elasto-electrodynamics for elastic and piezoelectric materials to describe the motion of the plate layers within the framework of the piecewise homogeneous body model and the use of the linearized Navier-Stokes equations to describe the flow of the compressible viscous fluid.The plane-strain state in the plate and the plane flow in the fluid take place.For the solution of the corresponding boundary-value problem,the Fourier transform is used with respect to the spatial coordinate on the axis along the laying direction of the plate.The analytical expressions of the Fourier transform of all the sought values of each component of the system are determined.The origins of the searched values are determined numerically,after which numerical results on the stress on the fluid and plate interface planes are presented and discussed.These results are obtained for the case where PZT-2 is chosen as the piezoelectric material,steel and aluminum as the elastic metal materials,and Glycerin as the fluid.Analysis of these results allows conclusions to be drawn about the character of the problem parameters on the frequency response of the interfacial stress.In particular,it was found that after a certain value of the vibration frequency,the presence of the metal layer in the two-layer plate led to an increase in the absolute values of the above interfacial stress.展开更多
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio...The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.展开更多
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn...Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process.展开更多
The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca...The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.展开更多
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p...This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.展开更多
Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose...Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.展开更多
A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an i...A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.展开更多
Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer pr...Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.展开更多
The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered ...The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered soil and the thickness of the top soil layer. The geometric parameters of the anchor and the soil properties(the liquid limit, plastic limit, specific gravity, undrained shear strength, density, and water content) were measured. Based on the energy analysis and present test data, an empirical formula to predict the penetration depth of torpedo anchor in two-layered soil bed was proposed. The proposed formula was extensively validated by laboratory and field data of previous researchers. The results were in good agreement with those obtained for two-layered and single-layered soil bed.Finally, a sensitivity analysis on the parameters in the formula was performed.展开更多
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nw...Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interracial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.展开更多
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
文摘This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.
基金the National Natural Science Foundation of China(61933010)the Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-QN-0733).
文摘This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.
基金funded by the Gansu Provincial Science and Technology Information Disclosure System Project(21ZD8JA001)Tianyou Innovation Team of Lanzhou Jiaotong University(TY202009).
文摘To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.12072217).
文摘One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.
基金Project supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-7023)。
文摘The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.
基金This research was funded by the National Natural Science Foundation of China(No.U21A20451)the Science and Technology Planning Project of Jilin Province(No.20200401105GX)the China University Industry University Research Innovation Fund(No.2021FNA01003).
文摘In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission.
文摘The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that the PZT(piezoelectric)layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer.This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid.It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of the hydro-elasto-piezoelectric system is studied.Another value of the present work is the use of the exact equations and relations of elasto-electrodynamics for elastic and piezoelectric materials to describe the motion of the plate layers within the framework of the piecewise homogeneous body model and the use of the linearized Navier-Stokes equations to describe the flow of the compressible viscous fluid.The plane-strain state in the plate and the plane flow in the fluid take place.For the solution of the corresponding boundary-value problem,the Fourier transform is used with respect to the spatial coordinate on the axis along the laying direction of the plate.The analytical expressions of the Fourier transform of all the sought values of each component of the system are determined.The origins of the searched values are determined numerically,after which numerical results on the stress on the fluid and plate interface planes are presented and discussed.These results are obtained for the case where PZT-2 is chosen as the piezoelectric material,steel and aluminum as the elastic metal materials,and Glycerin as the fluid.Analysis of these results allows conclusions to be drawn about the character of the problem parameters on the frequency response of the interfacial stress.In particular,it was found that after a certain value of the vibration frequency,the presence of the metal layer in the two-layer plate led to an increase in the absolute values of the above interfacial stress.
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2023R1A2C1005950)Jana Shafi is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process.
基金funded by King Saud University through Researchers Supporting Program Number (RSP2024R499).
文摘The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.
文摘This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.
基金Supported by the National Natural Science Foundation of China(Grant No.40674063)National Hi-tech Research and Development Program of China(863Program)(Grant No.2006AA09Z311)
文摘Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.
文摘A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.
基金financial support from the Project of National Science Foundation of China(Grant No.41272346)the National Outstanding Youth Funds(Grant No.41225011)+2 种基金financial support from the Science & Technology Research Plan of China Railway Eryuan Engineering Group CO.LTD (Grant No.13164196(13-15))the Project of National Science Foundation of China(Grant Nos. 41472293,91430105)"hundred talents" program of CAS
文摘Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.
基金financially supported by the Ministry of Education of China(Grant No.6141A02022337)
文摘The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered soil and the thickness of the top soil layer. The geometric parameters of the anchor and the soil properties(the liquid limit, plastic limit, specific gravity, undrained shear strength, density, and water content) were measured. Based on the energy analysis and present test data, an empirical formula to predict the penetration depth of torpedo anchor in two-layered soil bed was proposed. The proposed formula was extensively validated by laboratory and field data of previous researchers. The results were in good agreement with those obtained for two-layered and single-layered soil bed.Finally, a sensitivity analysis on the parameters in the formula was performed.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
文摘Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interracial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.