Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose...Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.展开更多
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute...In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep.展开更多
The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assi...The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assigned the specific values.As for the multi-layer Boussinesq-type models with the inclusion of the vertical velocity,however,the effect of the different values of these coefficients on linear and nonlinear performances has never been investigated yet.The present study focuses on a two-layer Boussinesq-type model with the highest spatial derivatives being 2 and theoretically and numerically examines the effect of the coefficient on model performance.Theoretical analysis show that different values for(0.13≤α≤0.25)do not have great effects on the high accuracy of the linear shoaling,linear phase celerity and even third-order nonlinearity for water depth range of 0<kh≤10(k is wave number and h is water depth).The corresponding errors using different values are restricted within 0.1%,0.1%and 1%for the linear shoaling amplitude,dispersion and nonlinear harmonics,respectively.Numerical tests including regular wave shoaling over mildly varying slope from deep to shallow water,regular wave propagation over submerged bar,bichromatic wave group and focusing wave propagation over deep water are conducted.The comparison between numerical results using different values of,experimental data and analytical solutions confirm the theoretical analysis.The flexibility and consistency of the two-layer Boussinesq-type model is therefore demonstrated theoretically and numerically.展开更多
When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant dens...When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill.展开更多
In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite netw...In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission.展开更多
By combining the Bodner-Partom constitutive model and equivalent stressfunction, finite element methods and program on analyzing non-elastic deformation and stress forthermal viscoplastic material are studied in this ...By combining the Bodner-Partom constitutive model and equivalent stressfunction, finite element methods and program on analyzing non-elastic deformation and stress forthermal viscoplastic material are studied in this paper, and it's the first time that this materialmodel is used in a kind of engineering software-MARC. Thermal viscoplastic behavior of hightemperature alloy GH536 specimen with gap is analyzed by this program. The research results show itis feasible to analyze thermal viscoplastic behavior of specimen or structure by applying B-P model.展开更多
Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based ...Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based on the classic elastoplastic and Perzyna over-stress viscoplastic theories,as well as triaxial unloading confining pressure test and triaxial unloading creep test results,an elastoplastic and viscoplastic damage constitutive model is established for the short-and long-term dilatancy and fracturing behavior of soft rock squeezing deformation.Firstly,the criteria for each deformation and failure stage are expressed as a linear function of confining pressure.Secondly,the total damage evolution equation considering time-dependent damage is proposed,including the initial damage produced at the excavation instant,in which the damage variable increases exponentially with the lateral strain,and creep damage.Thirdly,a transient five-stages elasto-plastic constitutive equation for the short-term deformation after excavation that comprised of elasticity,pre-peak damage-dilatancy,post-peak brittle-drop,linear strain-softening,and residual perfectly-plastic regimes is developed based on incremental elasto-plastic theory and the nonassociated flow rule.Fourthly,regarding the timedependent properties of soft rock,based on the Perzyna viscoplastic over-stress theory,a viscoplastic damage model is set up to capture creep damage and dilatancy behavior.Viscoplastic strain is produced when the stress exceeds the initial static yield surface fs;the distance between the static yield surface fs and the dynamic yield surface fd determines the viscoplastic strain rate.Finally,the established constitutive model is numerically implemented and field applied to the-848 m belt conveyer haulage roadway of Huainan Panyidong Coal Mine.Laboratory test results and in-situ monitoring results validate the rationality of the established constitutive model.The presented model takes both the transient and time-dependent damage and fracturing into consideration.展开更多
We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly...We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly used homogeneous medium inverse models.We used diffusion theory to generate optical data from a two-layered distribution of relevant tissue absorbers,namely,oxyhemoglobin,deoxyhemoglobin,water,and lipids,with a top-layer thickness in the range 1–15 mm.The generated data consisted of broadband continuous-wave(CW)diffuse reflectance in the wavelength range 650–1024 nm,and frequency-domain(FD)diffuse reflectance at 690 and 830 nm;two source-detector distances of 25 and 35mm were used to simulate a dual-slope technique.The data were inverted using diffusion theory for a semi-infinite homogeneous medium to generate reduced scattering coeffcients at 690 and 830nm(from FD data)and effective absorption spectra in the range 650–1024nm(from CW data).The absorption spectra were then converted into effective total concentration and oxygen saturation of hemoglobin,as well as water and lipid concentrations.For absolute values,it was found that the effective hemoglobin parameters are typically representative of the bottom layer,whereas water and lipid represent some average of the respective concentrations in the two layers.For concentration changes,lipid showed a significant cross-talk with other absorber concentrations,thus indicating that lipid dynamics obtained in these conditions may not be reliable.These systematic simulations of broadband spectroscopy of two-layered media provide guidance on how to interpret effective optical properties measured with similar instrumental setups under the assumption of medium homogeneity.展开更多
Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones. Simulated results show that the original crack-tip may not be separated ...Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones. Simulated results show that the original crack-tip may not be separated firstly in an elastic-viscoplastic polycrystals. The grain interior's material properties (e.g. strain rate sensitivity) characterize the competitions between plastic and cohesive energy dissipation mechanisms. The higher the strain rate sensitivity is, the larger amount of the external work is transformed into plastic dissipation energy than into cohesive energy, which delays the cohesive zone rupturing. With the strain rate sensitivity decreased, the material property tends to approach the elastic-plastic responses. In this case, the plastic dissipation energy decreases and the cohesive dissipation energy increases which accelerates the cohesive zones debonding. Increasing the cohesive strength or the critical separation displacement will reduce the stress triaxiality at grain interiors and grain boundaries. Enhancing the cohesive zones ductility can improve the matrix materials resistance to void damage.展开更多
Numerical solution of yield viscoplastic fluid flow is hindered by the singularity inherent to the Herschel-Bulkley model. A finite difference method over the boundary-fitted orthogonal coordinate system is util- ized...Numerical solution of yield viscoplastic fluid flow is hindered by the singularity inherent to the Herschel-Bulkley model. A finite difference method over the boundary-fitted orthogonal coordinate system is util- ized to investigate numerically the fully developed steady flow of non-Newtonian yield viscoplastic fluid through concentric and eccentric annuli. The fluid rheology is described with the Herschel-Bulkley model. The numerical simulation based on a continuous viscoplastic approach to the Herschel-Bulkley model is found in poor accordance with the experimental data on volumetric flow rate of a bentonite suspension. A strict mathematical model for Herschel-Bulkley fluid flow is established and the corresponding numerical procedures are proposed. However, only the case of flow of a Herschel-Bulkley fluid in a concentric annulus is resolved based on the presumed flow stnicture by using the common optimization technique. Possible flow structures in an eccentric afinulus are presumed, and further challenges in numerical simulation of the Herschel-Bulkley fluid flow are suggested.展开更多
Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Ba...Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences.展开更多
The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution ...The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.展开更多
The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required ...The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system. Based on Darcy’s law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2.展开更多
The elasticjviscoplastic constitutive equation which describes deformation law of metal materials was suggested based on no-yield-surface concept and thermal activation theory of dislocation. The equation which takes ...The elasticjviscoplastic constitutive equation which describes deformation law of metal materials was suggested based on no-yield-surface concept and thermal activation theory of dislocation. The equation which takes account of effects of strain-rate, strain history, strain-rate history, hardening and temperature has stronger physical basis.Comparison of the theoretical prediction with experimental results of mechanical behaviours of Ti under conditions of uniaxial stress and room temperature shows good consistency.展开更多
In this paper we propose a two-layer emergent model for scalable swarm system. The first layer describes the indi-vidual flocking behavior to the local goal position (the center of minimal circumcircle decided by the ...In this paper we propose a two-layer emergent model for scalable swarm system. The first layer describes the indi-vidual flocking behavior to the local goal position (the center of minimal circumcircle decided by the neighbors in the positive visual set of individuals) resulting from the individual motion to one or two farthest neighbors in its positive visual set; the second layer describes the emergent aggregating swarm behavior resulting from the individual motion to its local goal position. The scale of the swarm will not be limited because only local individual information is used for modelling in the two-layer topology. We study the stability properties of the swarm emergent behavior based on Lyapunov stability theory. Simulations showed that the swarm system can converge to goal regions while maintaining cohesiveness.展开更多
This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central...This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central Andes (16°S-26°S) up to a depth of 400 km, the bottom of the asthenosphere. For this purpose a simulation running over c. 50,000 years will be realized based on the geometry of a generic subduction zone and an elasto-viscoplastic Drucker-Prager rheology. The kinematic and thermal boundary conditions as well as the rheological parameters represent the current state of the study area. In future works the model will be refined using a systematic study of physical parameters in order to estimate the influence of the main parameters (e.g. viscosity, fault friction, velocity, shear heating) on the results of the reference model presented here. The reference model is kept as simple as possible to be able to estimate the influence of the parameters in future studies in the best possible way, whilst minimizing comnutational time.展开更多
The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep...The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep characteristics of the viscoplastic stage from the perspective of internal energy to analyze the mechanism of rock creep failure and determine the threshold of accelerated creep initiation.Based on the kinetic energy theorem,Perzyna viscoplastic theory,and the Nishihara model,a unified creep constitutive model that can describe the whole process of decaying creep,stable creep,and accelerated creep is established.Results reveal that the energy consumption and creep damage in the process of creep loading mainly come from the internal energy changes of geotechnical materials.The established creep model can not only describe the viscoelasticeplastic creep characteristics of rock,but also reflect the relationship between rock energy and creep deformation change.In addition,the research results provide a new method for determining the critical point of creep deformation and a new idea for studying the creep model and creep mechanical properties.展开更多
An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in orde...An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in order that the model may have a sound theoretical background. Independent hardening and softening and the rate dependence of concrete are described separately for tension and compression. A modified implicit backward Euler integration scheme is adopted for the numerical computation. Static and dynamic behavior of the material is illustrated with certain numerical examples at material point level and structural level, and compared with existing experimental data. Results validate the effectiveness of the model.展开更多
In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings o...In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings of−600 m level in Coal Mine“6.13”,Democratic People's Republic of Korea.The displacement components used for back analysis are the crown settlement and sidewalls convergence monitored at the end of the openings excavation,and the final closures predicted by GVM.The non-linear relation between displacements and back analysis parameters was obtained by artificial neural network(ANN)and Burger-creep viscoplastic(CVISC)model of FLAC3D.Then,the optimal parameters were determined for rock mass surrounding tunnel by genetic algorithm(GA)with both groups of measured displacements at the end of the final excavation and closures predicted by GVM.The maximum absolute error(MAE)and standard deviation(Std)between calculated displacements by numerical simulation with back analysis parameters and in situ ones were less than 6 and 2 mm,respectively.Therefore,it was found that the proposed method could be successfully applied to determining design parameters and stability for tunnels and underground cavities,as well as mine openings and stopes.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.40674063)National Hi-tech Research and Development Program of China(863Program)(Grant No.2006AA09Z311)
文摘Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
文摘In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep.
基金supported by the National Natural Science Foundation of China(Grant Nos.51779022,51809053,and 51579034)the Innovation Team Project of Estuary and Coast Protection and Management(Grant No.Y220013)the Open Project Fund of State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP19015).
文摘The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assigned the specific values.As for the multi-layer Boussinesq-type models with the inclusion of the vertical velocity,however,the effect of the different values of these coefficients on linear and nonlinear performances has never been investigated yet.The present study focuses on a two-layer Boussinesq-type model with the highest spatial derivatives being 2 and theoretically and numerically examines the effect of the coefficient on model performance.Theoretical analysis show that different values for(0.13≤α≤0.25)do not have great effects on the high accuracy of the linear shoaling,linear phase celerity and even third-order nonlinearity for water depth range of 0<kh≤10(k is wave number and h is water depth).The corresponding errors using different values are restricted within 0.1%,0.1%and 1%for the linear shoaling amplitude,dispersion and nonlinear harmonics,respectively.Numerical tests including regular wave shoaling over mildly varying slope from deep to shallow water,regular wave propagation over submerged bar,bichromatic wave group and focusing wave propagation over deep water are conducted.The comparison between numerical results using different values of,experimental data and analytical solutions confirm the theoretical analysis.The flexibility and consistency of the two-layer Boussinesq-type model is therefore demonstrated theoretically and numerically.
基金financially supported by the Institut Teknologi Bandung Research(Grant No.107a/I1.C01/PL/2017)
文摘When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill.
基金This research was funded by the National Natural Science Foundation of China(No.U21A20451)the Science and Technology Planning Project of Jilin Province(No.20200401105GX)the China University Industry University Research Innovation Fund(No.2021FNA01003).
文摘In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission.
基金This project was supported by NPU Youth Science Technology Innovation Foundation (020102).
文摘By combining the Bodner-Partom constitutive model and equivalent stressfunction, finite element methods and program on analyzing non-elastic deformation and stress forthermal viscoplastic material are studied in this paper, and it's the first time that this materialmodel is used in a kind of engineering software-MARC. Thermal viscoplastic behavior of hightemperature alloy GH536 specimen with gap is analyzed by this program. The research results show itis feasible to analyze thermal viscoplastic behavior of specimen or structure by applying B-P model.
基金financially supported by the National Natural Science Foundation of China(Grant No.52074258,Grant No.41941018,Grant No.51974289,and Grant No.51874232)the Natural Science Basic Research Program of Shaanxi Province(Shaanxi Coal and Chemical Industry Group Co.,Ltd.Joint Fund Project,Grant No.2021JLM-06)the open project of State Key Laboratory of Shield Machine and Boring Technology(Grant No.E01Z440101)。
文摘Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based on the classic elastoplastic and Perzyna over-stress viscoplastic theories,as well as triaxial unloading confining pressure test and triaxial unloading creep test results,an elastoplastic and viscoplastic damage constitutive model is established for the short-and long-term dilatancy and fracturing behavior of soft rock squeezing deformation.Firstly,the criteria for each deformation and failure stage are expressed as a linear function of confining pressure.Secondly,the total damage evolution equation considering time-dependent damage is proposed,including the initial damage produced at the excavation instant,in which the damage variable increases exponentially with the lateral strain,and creep damage.Thirdly,a transient five-stages elasto-plastic constitutive equation for the short-term deformation after excavation that comprised of elasticity,pre-peak damage-dilatancy,post-peak brittle-drop,linear strain-softening,and residual perfectly-plastic regimes is developed based on incremental elasto-plastic theory and the nonassociated flow rule.Fourthly,regarding the timedependent properties of soft rock,based on the Perzyna viscoplastic over-stress theory,a viscoplastic damage model is set up to capture creep damage and dilatancy behavior.Viscoplastic strain is produced when the stress exceeds the initial static yield surface fs;the distance between the static yield surface fs and the dynamic yield surface fd determines the viscoplastic strain rate.Finally,the established constitutive model is numerically implemented and field applied to the-848 m belt conveyer haulage roadway of Huainan Panyidong Coal Mine.Laboratory test results and in-situ monitoring results validate the rationality of the established constitutive model.The presented model takes both the transient and time-dependent damage and fracturing into consideration.
基金supported by National Institutes of Health(Nos.R01 NS095334,R01 EB029414).
文摘We investigated the relationship between chromophore concentrations in two-layered scattering media and the apparent chromophore concentrations measured with broadband optical spectroscopy in conjunction with commonly used homogeneous medium inverse models.We used diffusion theory to generate optical data from a two-layered distribution of relevant tissue absorbers,namely,oxyhemoglobin,deoxyhemoglobin,water,and lipids,with a top-layer thickness in the range 1–15 mm.The generated data consisted of broadband continuous-wave(CW)diffuse reflectance in the wavelength range 650–1024 nm,and frequency-domain(FD)diffuse reflectance at 690 and 830 nm;two source-detector distances of 25 and 35mm were used to simulate a dual-slope technique.The data were inverted using diffusion theory for a semi-infinite homogeneous medium to generate reduced scattering coeffcients at 690 and 830nm(from FD data)and effective absorption spectra in the range 650–1024nm(from CW data).The absorption spectra were then converted into effective total concentration and oxygen saturation of hemoglobin,as well as water and lipid concentrations.For absolute values,it was found that the effective hemoglobin parameters are typically representative of the bottom layer,whereas water and lipid represent some average of the respective concentrations in the two layers.For concentration changes,lipid showed a significant cross-talk with other absorber concentrations,thus indicating that lipid dynamics obtained in these conditions may not be reliable.These systematic simulations of broadband spectroscopy of two-layered media provide guidance on how to interpret effective optical properties measured with similar instrumental setups under the assumption of medium homogeneity.
基金Project supported by the National Natural Science Foundation of China (No.50371042) the Post Doctoral Science Foundation of China (No.20040350031)
文摘Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones. Simulated results show that the original crack-tip may not be separated firstly in an elastic-viscoplastic polycrystals. The grain interior's material properties (e.g. strain rate sensitivity) characterize the competitions between plastic and cohesive energy dissipation mechanisms. The higher the strain rate sensitivity is, the larger amount of the external work is transformed into plastic dissipation energy than into cohesive energy, which delays the cohesive zone rupturing. With the strain rate sensitivity decreased, the material property tends to approach the elastic-plastic responses. In this case, the plastic dissipation energy decreases and the cohesive dissipation energy increases which accelerates the cohesive zones debonding. Increasing the cohesive strength or the critical separation displacement will reduce the stress triaxiality at grain interiors and grain boundaries. Enhancing the cohesive zones ductility can improve the matrix materials resistance to void damage.
基金Supported by the State Key Development Program for Basic Research of China (2009CB623406)the National Natural Science Foundation of China (20990224,11172299)the National Science Fund for Distinguished Young Scholars (21025627)
文摘Numerical solution of yield viscoplastic fluid flow is hindered by the singularity inherent to the Herschel-Bulkley model. A finite difference method over the boundary-fitted orthogonal coordinate system is util- ized to investigate numerically the fully developed steady flow of non-Newtonian yield viscoplastic fluid through concentric and eccentric annuli. The fluid rheology is described with the Herschel-Bulkley model. The numerical simulation based on a continuous viscoplastic approach to the Herschel-Bulkley model is found in poor accordance with the experimental data on volumetric flow rate of a bentonite suspension. A strict mathematical model for Herschel-Bulkley fluid flow is established and the corresponding numerical procedures are proposed. However, only the case of flow of a Herschel-Bulkley fluid in a concentric annulus is resolved based on the presumed flow stnicture by using the common optimization technique. Possible flow structures in an eccentric afinulus are presumed, and further challenges in numerical simulation of the Herschel-Bulkley fluid flow are suggested.
文摘Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences.
基金supported by the NSFC (grant Nos. 41631072, 41721003, 41874023, 41574007, and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics (grant No. B17033)the DAAD Thematic Network Project (grant No. 57173947)
文摘The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.
文摘The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system. Based on Darcy’s law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2.
基金Projects Supported by National Natural Science Foundation of China
文摘The elasticjviscoplastic constitutive equation which describes deformation law of metal materials was suggested based on no-yield-surface concept and thermal activation theory of dislocation. The equation which takes account of effects of strain-rate, strain history, strain-rate history, hardening and temperature has stronger physical basis.Comparison of the theoretical prediction with experimental results of mechanical behaviours of Ti under conditions of uniaxial stress and room temperature shows good consistency.
基金Project (No. 60574088) supported by the National Natural ScienceFoundation of China
文摘In this paper we propose a two-layer emergent model for scalable swarm system. The first layer describes the indi-vidual flocking behavior to the local goal position (the center of minimal circumcircle decided by the neighbors in the positive visual set of individuals) resulting from the individual motion to one or two farthest neighbors in its positive visual set; the second layer describes the emergent aggregating swarm behavior resulting from the individual motion to its local goal position. The scale of the swarm will not be limited because only local individual information is used for modelling in the two-layer topology. We study the stability properties of the swarm emergent behavior based on Lyapunov stability theory. Simulations showed that the swarm system can converge to goal regions while maintaining cohesiveness.
文摘This paper presents preliminary results of three-dimensional thermomechanical finite-element models of a parameter study to compute the current temperature and stress distribution in the subduction zone of the central Andes (16°S-26°S) up to a depth of 400 km, the bottom of the asthenosphere. For this purpose a simulation running over c. 50,000 years will be realized based on the geometry of a generic subduction zone and an elasto-viscoplastic Drucker-Prager rheology. The kinematic and thermal boundary conditions as well as the rheological parameters represent the current state of the study area. In future works the model will be refined using a systematic study of physical parameters in order to estimate the influence of the main parameters (e.g. viscosity, fault friction, velocity, shear heating) on the results of the reference model presented here. The reference model is kept as simple as possible to be able to estimate the influence of the parameters in future studies in the best possible way, whilst minimizing comnutational time.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41941018)the Science and Tech-nology Service Network Initiative of the Chinese Academy of Sci-ences(Grant No.KFJSTS-QYZD-174),and the Guangxi Natural Science Foundation(Grant No.2020GXNSFAA159125).
文摘The initiating condition for the accelerated creep of rocks has caused difficulty in analyzing the whole creep process.Moreover,the existing Nishihara model has evident shortcomings in describing the accelerated creep characteristics of the viscoplastic stage from the perspective of internal energy to analyze the mechanism of rock creep failure and determine the threshold of accelerated creep initiation.Based on the kinetic energy theorem,Perzyna viscoplastic theory,and the Nishihara model,a unified creep constitutive model that can describe the whole process of decaying creep,stable creep,and accelerated creep is established.Results reveal that the energy consumption and creep damage in the process of creep loading mainly come from the internal energy changes of geotechnical materials.The established creep model can not only describe the viscoelasticeplastic creep characteristics of rock,but also reflect the relationship between rock energy and creep deformation change.In addition,the research results provide a new method for determining the critical point of creep deformation and a new idea for studying the creep model and creep mechanical properties.
基金supported by the National Natural Science Foundation of China (No.90510018)
文摘An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in order that the model may have a sound theoretical background. Independent hardening and softening and the rate dependence of concrete are described separately for tension and compression. A modified implicit backward Euler integration scheme is adopted for the numerical computation. Static and dynamic behavior of the material is illustrated with certain numerical examples at material point level and structural level, and compared with existing experimental data. Results validate the effectiveness of the model.
基金Project(32-41)supported by the National Science and Technical Development Foundation of DPR of Korea。
文摘In this paper,we present a new method of intelligent back analysis(IBA)using grey Verhulst model(GVM)to identify geotechnical parameters of rock mass surrounding tunnel,and validate it via a test for a main openings of−600 m level in Coal Mine“6.13”,Democratic People's Republic of Korea.The displacement components used for back analysis are the crown settlement and sidewalls convergence monitored at the end of the openings excavation,and the final closures predicted by GVM.The non-linear relation between displacements and back analysis parameters was obtained by artificial neural network(ANN)and Burger-creep viscoplastic(CVISC)model of FLAC3D.Then,the optimal parameters were determined for rock mass surrounding tunnel by genetic algorithm(GA)with both groups of measured displacements at the end of the final excavation and closures predicted by GVM.The maximum absolute error(MAE)and standard deviation(Std)between calculated displacements by numerical simulation with back analysis parameters and in situ ones were less than 6 and 2 mm,respectively.Therefore,it was found that the proposed method could be successfully applied to determining design parameters and stability for tunnels and underground cavities,as well as mine openings and stopes.