In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method a...In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling rati...A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time saving. So it is promising in the field of both investigation and application.展开更多
In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite netw...In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission.展开更多
This article focuses on the aggression of lightning overload on the equipment of the electrical network of sites where storm activity is very dense;and the electrocution of people located in the direct environment of ...This article focuses on the aggression of lightning overload on the equipment of the electrical network of sites where storm activity is very dense;and the electrocution of people located in the direct environment of the high-voltage substation during the flow of lightning current to the ground through the ground socket. The modeling of the flow circuit of the shock wave consisting of guard wire, lightning arrester and ground socket couple to the transformer of the high voltage substations, thanks to the approach of a servo block, led to the synthesis of a PID regulator (corrector) whose action is to reject the effects of the overvoltage on the network equipment and to significantly reduce or even cancel the effects of the step or touch voltage due to the distribution of the potential around the ground socket;and thus improve the quality of service of the high-voltage transmission and distribution electricity network, especially in stormy times.展开更多
The use of reluctance networks has been a conventional practice to analyze transformer structures. Basic transformer structures can be well analyzed by using the magnetic-electric analogues discovered by Heaviside in ...The use of reluctance networks has been a conventional practice to analyze transformer structures. Basic transformer structures can be well analyzed by using the magnetic-electric analogues discovered by Heaviside in the 19th century. However, as power transformer structures are getting more complex today, it has been recognized that changing transformer structures cannot be accurately analyzed using the current reluctance network methods. This paper presents a novel method in which the magnetic reluctance network or arbitrary complexity and the surrounding electrical networks can be analyzed as a single network. The method presented provides a straightforward mapping table for systematically linking the electric lumped elements to magnetic circuit elements. The methodology is validated by analyzing several practical transformer structures. The proposed method allows the analysis of coupled inductor of any complexity, linear or non-linear.展开更多
For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quanti...For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective.展开更多
Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration a...Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration and temperature.The influence of lubrication on the vibration and temperature characteristics of the system is considered in the model,and the real-time relationship between them is built up by using the transient temperature field model.After considering the lubrication,the bearing outer ring vibration acceleration and node temperature considering grease are lower,which shows the necessity of adding the lubrication model.The corresponding experiments for characteristics of vibration and temperature of the model are respectively conducted.In the envelope spectrum obtained from the simulation signal and the experimental signal,the frequency values corresponding to the peaks are close to the theoretical calculation results,and the error is very small.In the three stages of the temperature characteristic experiment,the node temperature change of the simulation model is consistent with the experiment.The good agreement between simulation and experiments proves the effectiveness of the model.By studying the influence of the bearing angular and fault size on the system node temperature,as well as the change law of bearing lubrication characteristics and temperature,it is found that the worse the working condition is,the higher the temperature is.When the ambient temperature is low,the viscosity of grease increases,and the oil film becomes thicker,which increases the sliding probability of the rolling element,thus affecting the normal operation of the bearing,which explains the phenomenon of frequent bearing faults of high-speed trains in the low-temperature area of Northeast China.Further analysis shows that faults often occur in the early stage of train operation in the low-temperature environment.展开更多
Using a survey of wrist-watch synchronization from a randomly selected group of independent volunteers, we model the system as a Kuramoto-type coupled oscillator network. Based on the phase data both the order paramet...Using a survey of wrist-watch synchronization from a randomly selected group of independent volunteers, we model the system as a Kuramoto-type coupled oscillator network. Based on the phase data both the order parameter and likely size of the coupling are derived and the possibilities for similar research to deduce topology from dynamics are discussed.展开更多
Sediment load estimation is generally required for study and development of water resources system. In this regard, artificial neural network (ANN) is the most widely used modeling tool especially in data-constraint r...Sediment load estimation is generally required for study and development of water resources system. In this regard, artificial neural network (ANN) is the most widely used modeling tool especially in data-constraint regions. This research attempts to combine SSA (singular spectrum analysis) with ANN, hereafter called SSA-ANN model, with expectation to improve the accuracy of sediment load predicted by the existing ANN approach. Two different catchments located in the Lower Mekong Basin (LMB) were selected for the study and the model performance was measured by several statistical indices. In comparing with ANN, the proposed SSA-ANN model shows its better performance repeatedly in both catchments. In validation stage, SSA-ANN is superior for larger Nash-Sutcliffe Efficiency about 24% in Ban Nong Kiang catchment and 7% in Nam Mae Pun Luang catchment. Other statistical measures of SSA-ANN are better than those of ANN as well. This improvement reveals the importance of SSA which filters noise containing in the raw time series and transforms the original input data to be near normal distribution which is favorable to model simulation. This coupled model is also recommended for the prediction of other water resources variables because extra input data are not required. Only additional computation, time series decomposition, is needed. The proposed technique could be potentially used to minimize the costly operation of sediment measurement in the LMB which is relatively rich in hydrometeorological records.展开更多
Magnetically coupled rodless cylinders are widely used in the coordinate positioning of mechanical arms,electro-static paintings,and other industrial applications.However,they exhibit strong nonlinear characteristics,...Magnetically coupled rodless cylinders are widely used in the coordinate positioning of mechanical arms,electro-static paintings,and other industrial applications.However,they exhibit strong nonlinear characteristics,which lead to low servo control accuracy.In this study,a mass-flow equation through the valve port was derived to improve the control performance,considering the characteristics of the dynamics and throttle-hole flow.Subsequently,a fric-tion model combining static,viscous,and Coulomb friction with a zero-velocity interval was proposed.In addition,energy and dynamic models were set for the experimental investigation of the magnetically coupled rodless cylin-der.A nonlinear mathematical model for the position of the magnetically coupled rodless cylinder was proposed.An incremental PID controller was designed for the magnetically coupled rodless cylinder to control this system,and the PID parameters were adjusted online using RBF neural network.The response results of the PID parameters based on the RBF neural network were compared with those of the traditional incremental PID control,which proved the superiority of the optimization control algorithm of the incremental PID parameters based on the RBF neural network servo control system.The experimental results of this model were compared with the simulation results.The average error between the established model and the actual system was 0.005175054(m),which was approximately 2.588%of the total travel length,demonstrating the accuracy of the theoretical model.展开更多
The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining d...The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules.展开更多
As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS...As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.展开更多
The high-speed maglev vehicle/guideway coupled model is an essential simulation tool for investigating vehicle dynamics and mitigating coupled vibration.To improve its accuracy efficiently,this study investigated a hi...The high-speed maglev vehicle/guideway coupled model is an essential simulation tool for investigating vehicle dynamics and mitigating coupled vibration.To improve its accuracy efficiently,this study investigated a hierarchical model updating method integrated with field measurements.First,a high-speed maglev vehicle/guideway coupled model,taking into account the real effect of guideway material properties and elastic restraint of bearings,was developed by integrating the finite element method,multi-body dynamics,and electromagnetic levitation control.Subsequently,simultaneous in-site measurements of the vehicle/guideway were conducted on a high-speed maglev test line to analyze the system response and structural modal parameters.During the hierarchical updating,an Elman neural network with the optimal Latin hypercube sampling method was used to substitute the FE guideway model,thus improving the computational efficiency.The multi-objective particle swarm optimization algorithm with the gray relational projection method was applied to hierarchically update the parameters of the guideway layer and magnetic force layer based on the measured modal parameters and the electromagnet vibration,respectively.Finally,the updated coupled model was compared with the field measurements,and the results demonstrated the model’s accuracy in simulating the actual dynamic response,validating the effectiveness of the updating method.展开更多
A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite di...A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN.) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.展开更多
A pore network model(PNM)is developed for gas diffusion layer(GDL)in the cathode side of polymer electrolyte membrane fuel cells(PEMFCs).The model is coupled to network models of reactant oxygen and electron transport...A pore network model(PNM)is developed for gas diffusion layer(GDL)in the cathode side of polymer electrolyte membrane fuel cells(PEMFCs).The model is coupled to network models of reactant oxygen and electron transport inside GDL and also to simple models of catalyst layer and membrane.The coupled model captures the simultaneous effect of reactant and charge access to reaction sites and the resulting water generation,allowing it a transient nature up to reaching the steady state,which is a notable modification to the available PNMs which assume uniform invasion of liquid water from catalyst layer.The results show strongly non-uniform water saturation distributions inside GDL with maxima under the current collector ribs.As an extra feature,the model can predict time evolution of oxygen concentration and water generation rate at catalyst layer as a result of liquid water build-up in GDL.Also included is a dry case coupled model in order to be compared with the main model.The local water blockages in GDL inflict an average of 38.8%loss on the produced limiting current of the fuel cell.Finally,the coupling allows prediction of concentration overvoltages which emerges to be most pronounced in the under-rib region.展开更多
Evaluation of ecological carrying capacity is an important method of analyzing regional sustainable development, study on ecological carrying capacity is to settle the contradictions between resource and environment, ...Evaluation of ecological carrying capacity is an important method of analyzing regional sustainable development, study on ecological carrying capacity is to settle the contradictions between resource and environment, and it is a significant basis for realizing regional sustainable development. This paper, on the basis of the academician Sun Tiehang's "unification of three" for the eco-city construction, established ecological carrying capacity evaluation indexes for the traditional industrial and mining city—Huainan City; and applied GM–BP neural network coupling model for the dynamic evolution and prediction of ecological carrying capacity of Huainan City in the future decade. The results showed that ecological carrying capacity index of Huainan would be 2.13 by 2025, higher than the loadable state 1, so the ecological carrying capacity would keep in the over-loaded level, but the over-loaded degree would be lower than the current. Carrying capacity of arable land, energy and water resources contribute greatly to the improvement of ecological carrying capacity, thus it is imperative to adjust this unreasonable and unsustainable ecological consumption relationship, enhance environmental protection awareness and high-efficiency utilization of resources, and take an energy-saving and intensive development path.展开更多
基金financially supporrted by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the National Natural Science Foundation of China(Grant Nos.51779150 and 51979040)
文摘In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time saving. So it is promising in the field of both investigation and application.
基金This research was funded by the National Natural Science Foundation of China(No.U21A20451)the Science and Technology Planning Project of Jilin Province(No.20200401105GX)the China University Industry University Research Innovation Fund(No.2021FNA01003).
文摘In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission.
文摘This article focuses on the aggression of lightning overload on the equipment of the electrical network of sites where storm activity is very dense;and the electrocution of people located in the direct environment of the high-voltage substation during the flow of lightning current to the ground through the ground socket. The modeling of the flow circuit of the shock wave consisting of guard wire, lightning arrester and ground socket couple to the transformer of the high voltage substations, thanks to the approach of a servo block, led to the synthesis of a PID regulator (corrector) whose action is to reject the effects of the overvoltage on the network equipment and to significantly reduce or even cancel the effects of the step or touch voltage due to the distribution of the potential around the ground socket;and thus improve the quality of service of the high-voltage transmission and distribution electricity network, especially in stormy times.
文摘The use of reluctance networks has been a conventional practice to analyze transformer structures. Basic transformer structures can be well analyzed by using the magnetic-electric analogues discovered by Heaviside in the 19th century. However, as power transformer structures are getting more complex today, it has been recognized that changing transformer structures cannot be accurately analyzed using the current reluctance network methods. This paper presents a novel method in which the magnetic reluctance network or arbitrary complexity and the surrounding electrical networks can be analyzed as a single network. The method presented provides a straightforward mapping table for systematically linking the electric lumped elements to magnetic circuit elements. The methodology is validated by analyzing several practical transformer structures. The proposed method allows the analysis of coupled inductor of any complexity, linear or non-linear.
基金Supported by the National Defense Industrial Technology Development Program of China~~
文摘For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective.
基金supported by the National Key R&D Program of China(No.2020YFB2007700)the National Natural Science Foundation of China(Nos.11790282,12032017,12002221,and 11872256)+1 种基金the S&T Program of Hebei Province of China(No.20310803D)the Natural Science Foundation of Hebei Province of China(No.A2020210028)。
文摘Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration and temperature.The influence of lubrication on the vibration and temperature characteristics of the system is considered in the model,and the real-time relationship between them is built up by using the transient temperature field model.After considering the lubrication,the bearing outer ring vibration acceleration and node temperature considering grease are lower,which shows the necessity of adding the lubrication model.The corresponding experiments for characteristics of vibration and temperature of the model are respectively conducted.In the envelope spectrum obtained from the simulation signal and the experimental signal,the frequency values corresponding to the peaks are close to the theoretical calculation results,and the error is very small.In the three stages of the temperature characteristic experiment,the node temperature change of the simulation model is consistent with the experiment.The good agreement between simulation and experiments proves the effectiveness of the model.By studying the influence of the bearing angular and fault size on the system node temperature,as well as the change law of bearing lubrication characteristics and temperature,it is found that the worse the working condition is,the higher the temperature is.When the ambient temperature is low,the viscosity of grease increases,and the oil film becomes thicker,which increases the sliding probability of the rolling element,thus affecting the normal operation of the bearing,which explains the phenomenon of frequent bearing faults of high-speed trains in the low-temperature area of Northeast China.Further analysis shows that faults often occur in the early stage of train operation in the low-temperature environment.
文摘Using a survey of wrist-watch synchronization from a randomly selected group of independent volunteers, we model the system as a Kuramoto-type coupled oscillator network. Based on the phase data both the order parameter and likely size of the coupling are derived and the possibilities for similar research to deduce topology from dynamics are discussed.
文摘Sediment load estimation is generally required for study and development of water resources system. In this regard, artificial neural network (ANN) is the most widely used modeling tool especially in data-constraint regions. This research attempts to combine SSA (singular spectrum analysis) with ANN, hereafter called SSA-ANN model, with expectation to improve the accuracy of sediment load predicted by the existing ANN approach. Two different catchments located in the Lower Mekong Basin (LMB) were selected for the study and the model performance was measured by several statistical indices. In comparing with ANN, the proposed SSA-ANN model shows its better performance repeatedly in both catchments. In validation stage, SSA-ANN is superior for larger Nash-Sutcliffe Efficiency about 24% in Ban Nong Kiang catchment and 7% in Nam Mae Pun Luang catchment. Other statistical measures of SSA-ANN are better than those of ANN as well. This improvement reveals the importance of SSA which filters noise containing in the raw time series and transforms the original input data to be near normal distribution which is favorable to model simulation. This coupled model is also recommended for the prediction of other water resources variables because extra input data are not required. Only additional computation, time series decomposition, is needed. The proposed technique could be potentially used to minimize the costly operation of sediment measurement in the LMB which is relatively rich in hydrometeorological records.
基金Supported by Outstanding Young Scientists in Beijing of China(Grant No.BJJWZYJH01201910006021)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China(Grant No.GZKF-202016)+2 种基金Henan Provincial Science and Technology Key Project of China(Grant Nos.202102210081,212102210050)Sub Project of Strengthening Key Basic Research Projects in the Basic Plan of the Science and Technology Commission of the Central Military Commission of China(Grant No.2019-JCJQ-ZD-120-13)Henan Provincial Fundamental Research Funds for the Universities of China(Grant No.NSFRF200403).
文摘Magnetically coupled rodless cylinders are widely used in the coordinate positioning of mechanical arms,electro-static paintings,and other industrial applications.However,they exhibit strong nonlinear characteristics,which lead to low servo control accuracy.In this study,a mass-flow equation through the valve port was derived to improve the control performance,considering the characteristics of the dynamics and throttle-hole flow.Subsequently,a fric-tion model combining static,viscous,and Coulomb friction with a zero-velocity interval was proposed.In addition,energy and dynamic models were set for the experimental investigation of the magnetically coupled rodless cylin-der.A nonlinear mathematical model for the position of the magnetically coupled rodless cylinder was proposed.An incremental PID controller was designed for the magnetically coupled rodless cylinder to control this system,and the PID parameters were adjusted online using RBF neural network.The response results of the PID parameters based on the RBF neural network were compared with those of the traditional incremental PID control,which proved the superiority of the optimization control algorithm of the incremental PID parameters based on the RBF neural network servo control system.The experimental results of this model were compared with the simulation results.The average error between the established model and the actual system was 0.005175054(m),which was approximately 2.588%of the total travel length,demonstrating the accuracy of the theoretical model.
基金supported by the Science and Technology Project of the Headquarters of the State Grid Corporation of China(52199922001U).
文摘The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules.
文摘As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.
基金The study described in this paper was supported by the National Key Research and Development Program of China(No.2016YFB1200602-30).
文摘The high-speed maglev vehicle/guideway coupled model is an essential simulation tool for investigating vehicle dynamics and mitigating coupled vibration.To improve its accuracy efficiently,this study investigated a hierarchical model updating method integrated with field measurements.First,a high-speed maglev vehicle/guideway coupled model,taking into account the real effect of guideway material properties and elastic restraint of bearings,was developed by integrating the finite element method,multi-body dynamics,and electromagnetic levitation control.Subsequently,simultaneous in-site measurements of the vehicle/guideway were conducted on a high-speed maglev test line to analyze the system response and structural modal parameters.During the hierarchical updating,an Elman neural network with the optimal Latin hypercube sampling method was used to substitute the FE guideway model,thus improving the computational efficiency.The multi-objective particle swarm optimization algorithm with the gray relational projection method was applied to hierarchically update the parameters of the guideway layer and magnetic force layer based on the measured modal parameters and the electromagnet vibration,respectively.Finally,the updated coupled model was compared with the field measurements,and the results demonstrated the model’s accuracy in simulating the actual dynamic response,validating the effectiveness of the updating method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872110,10902061)
文摘A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN.) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.
文摘A pore network model(PNM)is developed for gas diffusion layer(GDL)in the cathode side of polymer electrolyte membrane fuel cells(PEMFCs).The model is coupled to network models of reactant oxygen and electron transport inside GDL and also to simple models of catalyst layer and membrane.The coupled model captures the simultaneous effect of reactant and charge access to reaction sites and the resulting water generation,allowing it a transient nature up to reaching the steady state,which is a notable modification to the available PNMs which assume uniform invasion of liquid water from catalyst layer.The results show strongly non-uniform water saturation distributions inside GDL with maxima under the current collector ribs.As an extra feature,the model can predict time evolution of oxygen concentration and water generation rate at catalyst layer as a result of liquid water build-up in GDL.Also included is a dry case coupled model in order to be compared with the main model.The local water blockages in GDL inflict an average of 38.8%loss on the produced limiting current of the fuel cell.Finally,the coupling allows prediction of concentration overvoltages which emerges to be most pronounced in the under-rib region.
基金Sponsored by National Natural Science Foundation of China(41101566)
文摘Evaluation of ecological carrying capacity is an important method of analyzing regional sustainable development, study on ecological carrying capacity is to settle the contradictions between resource and environment, and it is a significant basis for realizing regional sustainable development. This paper, on the basis of the academician Sun Tiehang's "unification of three" for the eco-city construction, established ecological carrying capacity evaluation indexes for the traditional industrial and mining city—Huainan City; and applied GM–BP neural network coupling model for the dynamic evolution and prediction of ecological carrying capacity of Huainan City in the future decade. The results showed that ecological carrying capacity index of Huainan would be 2.13 by 2025, higher than the loadable state 1, so the ecological carrying capacity would keep in the over-loaded level, but the over-loaded degree would be lower than the current. Carrying capacity of arable land, energy and water resources contribute greatly to the improvement of ecological carrying capacity, thus it is imperative to adjust this unreasonable and unsustainable ecological consumption relationship, enhance environmental protection awareness and high-efficiency utilization of resources, and take an energy-saving and intensive development path.