To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morpho...To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.展开更多
Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estima...Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.展开更多
Aiming at the problem of open set voiceprint recognition, this paper proposes an adaptive threshold algorithm based on OTSU and deep learning. The bottleneck technology of open set voiceprint recognition lies in the c...Aiming at the problem of open set voiceprint recognition, this paper proposes an adaptive threshold algorithm based on OTSU and deep learning. The bottleneck technology of open set voiceprint recognition lies in the calculation of similarity values and thresholds of speakers inside and outside the set. This paper combines deep learning and machine learning methods, and uses a Deep Belief Network stacked with three layers of Restricted Boltzmann Machines to extract deep voice features from basic acoustic features. And by training the Gaussian Mixture Model, this paper calculates the similarity value of the feature, and further determines the threshold of the similarity value of the feature through OTSU. After experimental testing, the algorithm in this paper has a false rejection rate of 3.00% for specific speakers, a false acceptance rate of 0.35% for internal speakers, and a false acceptance rate of 0 for external speakers. This improves the accuracy of traditional methods in open set voiceprint recognition. This proves that the method is feasible and good recognition effect.展开更多
基金supported by Natural Science Foundation of Jilin Province(YDZJ202401352ZYTS).
文摘To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.
基金supported by the National Natural Science Foundation of China (61302188)the Nanjing University of Science and Technology Research Foundation (2010ZDJH05)
文摘Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.
文摘Aiming at the problem of open set voiceprint recognition, this paper proposes an adaptive threshold algorithm based on OTSU and deep learning. The bottleneck technology of open set voiceprint recognition lies in the calculation of similarity values and thresholds of speakers inside and outside the set. This paper combines deep learning and machine learning methods, and uses a Deep Belief Network stacked with three layers of Restricted Boltzmann Machines to extract deep voice features from basic acoustic features. And by training the Gaussian Mixture Model, this paper calculates the similarity value of the feature, and further determines the threshold of the similarity value of the feature through OTSU. After experimental testing, the algorithm in this paper has a false rejection rate of 3.00% for specific speakers, a false acceptance rate of 0.35% for internal speakers, and a false acceptance rate of 0 for external speakers. This improves the accuracy of traditional methods in open set voiceprint recognition. This proves that the method is feasible and good recognition effect.