期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A Two-Level Additive Schwarz Preconditioner for Local C^0 Discontinuous Galerkin Methods of Kirchhoff Plates
1
作者 Jianguo Huang Xuehai Huang 《Communications on Applied Mathematics and Computation》 2019年第2期167-185,共19页
A two-level additive Schwarz preconditioner based on the overlapping domain decomposition approach is proposed for the local C0 discontinuous Galerkin (LCDG) method of Kirchhoff plates.Then with the help of an intergr... A two-level additive Schwarz preconditioner based on the overlapping domain decomposition approach is proposed for the local C0 discontinuous Galerkin (LCDG) method of Kirchhoff plates.Then with the help of an intergrid transfer operator and its error estimates,it is proved that the condition number is bounded by O(1 + (H4/δ4)),where H is the diameter of the subdomains and δ measures the overlap among subdomains.And for some special cases of small overlap,the estimate can be improved as O(1 + (H3/δ3)).At last,some numerical results are reported to demonstrate the high efficiency of the two-level additive Schwarz preconditioner. 展开更多
关键词 KIRCHHOFF plate C^0 DISCONTINUOUS GALERKIN two-level additive schwarz preconditioner Intergrid transfer operator
下载PDF
自伴不定问题的WOPSIP方法的两水平加性Schwarz预条件子(英文)
2
作者 王春梅 颜世建 《黑龙江大学自然科学学报》 CAS 北大核心 2014年第3期296-301,共6页
弱过度惩罚对称内罚方法(WOPSIP),是一种间断有限元方法,其主要特点是它满足能量范数和L2范数的正确的误差估计,且它不要求调整罚参数。此外,由于双线性形式比较简单,使得WOPSIP方法的编程比较简单,且程序易于实现并行。提出了非自伴不... 弱过度惩罚对称内罚方法(WOPSIP),是一种间断有限元方法,其主要特点是它满足能量范数和L2范数的正确的误差估计,且它不要求调整罚参数。此外,由于双线性形式比较简单,使得WOPSIP方法的编程比较简单,且程序易于实现并行。提出了非自伴不定问题的WOPSIP方法的两水平加性Schwarz预条件子。条件数有界,界为(1+maxiHiδi)2,其中Hi和δi分别为子区域Ωi的直径和相邻子区域之间的重叠度。 展开更多
关键词 非自伴不定 两水平 加性schwarz 预条件子 弱过度惩罚 内罚
下载PDF
Two-Level Additive Schwarz Methods Using Rough Polyharmonic Splines-Based Coarse Spaces
3
作者 Rui DU Lei ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第5期803-812,共10页
This paper introduces a domain decomposition preconditioner for elliptic equations with rough coefficients. The coarse space of the domain decomposition method is constructed via the so-called rough polyharmonic splin... This paper introduces a domain decomposition preconditioner for elliptic equations with rough coefficients. The coarse space of the domain decomposition method is constructed via the so-called rough polyharmonic splines (RPS for short). As an approximation space of the eUiptic problem, RPS is known to recover the quasi-optimal convergence rate and attain the quasi-optimal localization property. The authors lay out the formulation of the RPS based domain decomposition preconditioner, and numerically verify the performance boost of this method through several examples. 展开更多
关键词 Numerical homogenization Domain decomposition two-level schwarz additive preconditioner Rough polyharmonic splines
原文传递
二阶椭圆问题的一种两水平算法
4
作者 田蓓艺 《南京晓庄学院学报》 2016年第6期13-17,共5页
该文构造一种Helmholtz方程Dirichlet问题的弱Galerkin方法的两水平预处理算法.首先给出问题的弱Galerkin离散方法,引入一种弱Galerkin离散方法的两水平加性Schwarz预优算子,构造网格转移算子,证明了预优算子的条件数是最优的.
关键词 弱Galerkin方法 两水平加性schwarz预优算子 二阶椭圆问题 HELMHOLTZ方程
下载PDF
限制加性许瓦兹预条件的变形及其在二维三温能量方程中的应用(英文)
5
作者 曹艳华 刘兴平 谷同祥 《计算物理》 CSCD 北大核心 2008年第6期649-658,共10页
给出标准限制加性许瓦兹预条件的变形,并应用当前流行的Newton-Krylov-Schwarz方法,结合该预条件子,求解由二维三温能量方程离散得到的非线性代数方程组,减少收敛所需要的迭代次数和所需的CPU时间.数值实验表明,该方法比标准限制加性许... 给出标准限制加性许瓦兹预条件的变形,并应用当前流行的Newton-Krylov-Schwarz方法,结合该预条件子,求解由二维三温能量方程离散得到的非线性代数方程组,减少收敛所需要的迭代次数和所需的CPU时间.数值实验表明,该方法比标准限制加性许瓦兹预条件方法收敛所需要的迭代次数和CPU时间要少. 展开更多
关键词 并行计算 预条件矩阵 迭代求解 加性许瓦兹方法 能量方程
下载PDF
A High-order Coupled Compact Integrated RBF Approximation Based Domain Decomposition Algorithm for Second-order Differential Problems 被引量:1
6
作者 C.M.T.Tien N.Pham-Sy +2 位作者 N.Mai-Duy C.-D.Tran T.Tran-Cong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第4期251-304,共54页
This paper presents a high-order coupled compact integrated RBF(CC IRBF)approximation based domain decomposition(DD)algorithm for the discretisation of second-order differential problems.Several Schwarz DD algorithms,... This paper presents a high-order coupled compact integrated RBF(CC IRBF)approximation based domain decomposition(DD)algorithm for the discretisation of second-order differential problems.Several Schwarz DD algorithms,including one-level additive/multiplicative and two-level additive/multiplicative/hybrid,are employed.The CCIRBF based DD algorithms are analysed with different mesh sizes,numbers of subdomains and overlap sizes for Poisson problems.Our convergence analysis shows that the CCIRBF two-level multiplicative version is the most effective algorithm among various schemes employed here.Especially,the present CCIRBF two-level method converges quite rapidly even when the domain is divided into many subdomains,which shows great promise for either serial or parallel computing.For practical tests,we then incorporate the CCIRBF into serial and parallel two-level multiplicative Schwarz.Several numerical examples,including those governed by Poisson and Navier-Stokes equations are analysed to demonstrate the accuracy and efficiency of the serial and parallel algorithms implemented with the CCIRBF.Numerical results show:(i)the CCIRBF-Serial and-Parallel algorithms have the capability to reach almost the same solution accuracy level of the CCIRBF-Single domain,which is ideal in terms of computational calculations;(ii)the CCIRBF-Serial and-Parallel algorithms are highly accurate in comparison with standard finite difference,compact finite difference and some other schemes;(iii)the proposed CCIRBF-Serial and-Parallel algorithms may be used as alternatives to solve large-size problems which the CCIRBF-Single domain may not be able to deal with.The ability of producing stable and highly accurate results of the proposed serial and parallel schemes is believed to be the contribution of the coarse mesh of the two-level domain decomposition and the CCIRBF approximation.It is noted that the focus of this paper is on the derivation of highly accurate serial and parallel algorithms for second-order differential problems.The scope of this work does not cover a thorough analysis of computational time. 展开更多
关键词 COUPLED COMPACT INTEGRATED RBF (CCIRBF) schwarz domain decomposition one-level two-level coarse meshes additive multiplicative hybrid serial parallel COLOURING technique Poisson EQUATION Naiver-Stokes EQUATION liddriven cavity
下载PDF
求解三维裂缝型多孔介质流体的场分裂预条件子研究
7
作者 杨念 杨海建 邵柏强 《数学理论与应用》 2023年第4期123-137,共15页
随着Newton-Krylov方法在求解大型稀疏非线性方程组中的逐步应用,线性预条件子的设计对整个求解器起着至关重要的作用.本文研究基于物理和区域分解方法的不同组合的场分裂(Field-Split,FS)预条件子,并应用于裂缝型多孔介质的非定常流动... 随着Newton-Krylov方法在求解大型稀疏非线性方程组中的逐步应用,线性预条件子的设计对整个求解器起着至关重要的作用.本文研究基于物理和区域分解方法的不同组合的场分裂(Field-Split,FS)预条件子,并应用于裂缝型多孔介质的非定常流动问题.在区域分解的框架下,考虑几种新的FS预条件子:加性FS预条件子、乘性FS预条件子、舒尔补FS预条件子和约束压力残差(Constrained Pressure Residual,CPR)预条件子,对相应的子系统采用限制加性Schwarz算法(Restricted additive Schwarz algorithm,RAS)进行近似求解.为了进一步提高场分裂预条件子的数值性能,提出并构建两水平的场分裂预条件子.最后在天河二号超算平台上进行数值实验,结果显示所提出的预条件子具有良好的鲁棒性和并行可扩展性. 展开更多
关键词 油藏模拟 限制加性schwarz算法 场分裂预条件子 并行计算
下载PDF
A Preconditioned Recycling GMRES Solver for Stochastic Helmholtz Problems
8
作者 Chao Jin Xiao-Chuan Cai 《Communications in Computational Physics》 SCIE 2009年第7期342-353,共12页
We present a parallel Schwarz type domain decomposition preconditioned recycling Krylov subspace method for the numerical solution of stochastic indefinite elliptic equations with two random coefficients.Karhunen-Loev... We present a parallel Schwarz type domain decomposition preconditioned recycling Krylov subspace method for the numerical solution of stochastic indefinite elliptic equations with two random coefficients.Karhunen-Loeve expansions are used to represent the stochastic variables and the stochastic Galerkin method with double orthogonal polynomials is used to derive a sequence of uncoupled deterministic equations.We show numerically that the Schwarz preconditioned recycling GMRES method is an effective technique for solving the entire family of linear systems and,in particular,the use of recycled Krylov subspaces is the key element of this successful approach. 展开更多
关键词 Recycling GMRES domain decomposition additive schwarz preconditioner stochastic Helmholtz equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部