期刊文献+
共找到352篇文章
< 1 2 18 >
每页显示 20 50 100
A Hybrid Level Set Optimization Design Method of Functionally Graded Cellular Structures Considering Connectivity
1
作者 Yan Dong Kang Zhao +1 位作者 Liang Gao Hao Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期1-18,共18页
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr... With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures. 展开更多
关键词 hybrid level set method functionally graded cellular structure CONNECTIVITY interpolated transition optimization design
下载PDF
2D multi-scale hybrid optimization method for geophysical inversion and its application 被引量:2
2
作者 潘纪顺 王新建 +4 位作者 张先康 徐朝繁 Zhao Ping 田晓峰 潘素珍 《Applied Geophysics》 SCIE CSCD 2009年第4期337-348,394,共13页
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ... Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust. 展开更多
关键词 MULTI-SCALE seismic travel-time tomography hybrid optimization method INVERSION A'nyemaqen suture zone
下载PDF
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:1
3
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm STRUCTURES EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
下载PDF
Hybrid method for global optimization using more accuracy interval computation
4
作者 崔中浩 雷咏梅 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期445-450,共6页
In this paper, a novel hybrid method is presented for finding global optimization of an objective function. Based on the interval computation, this hybrid method combines interval deterministic method and stochastic e... In this paper, a novel hybrid method is presented for finding global optimization of an objective function. Based on the interval computation, this hybrid method combines interval deterministic method and stochastic evolution method. It can find global optimization quickly while ensuring the deterministic and stability of the algorithm. When using interval computation, extra width constraints accuracy of interval computation results. In this paper, a splitting method to reduce the extra width is introduced. This method is easy and it can get a more precise interval computation result. When finding the global optimization, it can increase the efficiency of pruning. Several experiments are given to illustrate the advantage of the new hybrid method. 展开更多
关键词 interval arithmetic global optimization interval computation extra width hybrid method
下载PDF
Hybrid Optimization of a Valveless Diaphragm Micropump Using the Cut-Cell Method
5
作者 kapsoulis K.Samouchos +1 位作者 X.Trompoukis K.Giannakoglou 《Journal of Mechanics Engineering and Automation》 2019年第4期120-127,共8页
This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaph... This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaphragm that generates the unsteady flow within the device.The optimization,which is related exclusively to the diaphragm motion,aims at maximizing the net flowrate and minimizing the backflow at the outlet diffuser.All CFD analyses are performed using an in-house cut-cell method,based on the finite volume approach,on a many-processor system.To reduce the optimization turn-around time,two optimization methods,a gradient-free evolutionary algorithm enhanced by surrogate evaluation models and a gradient-based(GB)method are synergistically used.To support the GB optimization,the continuous adjoint method that computes the gradient of the objectives with respect to the design variables has been developed and programmed.Using the hybrid optimization method,the Pareto front of non-dominated solutions,in the two-objective space,is computed.Finally,a couple of optimal solutions selected from the computed Pareto front are re-evaluated by considering uncertainties in the operating conditions;these are quantified using the polynomial chaos expansion method. 展开更多
关键词 DIAPHRAGM MICROPUMP cut-cell method hybrid optimization ADJOINT method evolutionary algorithm uncertaintyquantification
下载PDF
Optimization of multi-revolution low-thrust transfer based on modified direct method
6
作者 崔平远 尚海滨 +1 位作者 任远 栾恩杰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第6期814-818,共5页
A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, th... A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, the search space of free parameters has been decreased. Then, in order to obtain the global optimal solution effectively and robustly, the simulated annealing and penalty function strategies were used to handle the constraints, and a GA/SQP hybrid optimization algorithm was utilized to solve the parameter optimization problem, in which, a feasible suboptimal solution obtained by GA was submitted as an initial parameter set to SQP for refinement. Comparing to the classical direct method, this novel method has fewer free parameters, needs not initial guesses, and has higher computation precision. An optimal-fuel transfer problem from LEO to GEO was taken as an example to validate the proposed approach. The results of simulation indicate that our approach is available to solve the problem of optimal muhi-revolution transfer between Earth-orbits. 展开更多
关键词 LOW-THRUST optimal transfer modified direct method hybrid algorithm simulated annealing
下载PDF
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
7
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 Whale optimization algorithm Filter and Wrapper model K-nearest neighbor method Adaptive neighborhood hybrid mutation
下载PDF
Predictive Modeling and Parameter Optimization of Cutting Forces During Orbital Drilling 被引量:1
8
作者 单以才 李亮 +2 位作者 何宁 秦晓杰 章婷 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期521-529,共9页
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d... To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production. 展开更多
关键词 orbital drilling cutting force hybrid level orthogonal experiment method prediction model parameter optimization
下载PDF
基于响应面回归模型的纤维混凝土力学性能分析
9
作者 邓友生 孟丽青 +3 位作者 郑云方 邹新军 姚志刚 肇慧玲 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期177-187,共11页
为研究玄武岩纤维和纤维素纤维掺量对混杂纤维轻骨料高强混凝土抗压强度、抗折强度和劈裂抗拉强度的影响,构建响应面回归模型,对比分析其力学试验实测值和预测值,并结合渴求函数获得混凝土优化配合比.结果表明:此回归模型有效且可信度高... 为研究玄武岩纤维和纤维素纤维掺量对混杂纤维轻骨料高强混凝土抗压强度、抗折强度和劈裂抗拉强度的影响,构建响应面回归模型,对比分析其力学试验实测值和预测值,并结合渴求函数获得混凝土优化配合比.结果表明:此回归模型有效且可信度高,可用于分析试验结果;两种纤维交互作用、水灰比与纤维素纤维交互作用对抗压强度、抗折强度、劈裂抗拉强度影响显著;模型预测最优水灰比为0.30,纤维素纤维掺量为0.90 kg/m3,玄武岩纤维掺量为4.00 kg/m3,强度预测值与试验值间相对误差绝对值均小于5%,该回归模型可为混杂纤维轻骨料高强混凝土的配合比多目标优化提供参考. 展开更多
关键词 响应面方法 高强混凝土 混杂纤维 渴求函数 配合比优化
下载PDF
数字图像混沌序列抽样加权强置乱算法仿真
10
作者 贺国平 张国荣 《计算机仿真》 2024年第10期192-195,350,共5页
数字图像置乱关系到个人隐私和信息安全问题,为了保护图像中的敏感信息,提出一种基于位交换和混沌优化的数字图像置乱算法。使用散列函数获得数字图像明文的密钥流,采用与明文相关的子密钥推导像素初始值,通过非线性交叉生成位交换算子... 数字图像置乱关系到个人隐私和信息安全问题,为了保护图像中的敏感信息,提出一种基于位交换和混沌优化的数字图像置乱算法。使用散列函数获得数字图像明文的密钥流,采用与明文相关的子密钥推导像素初始值,通过非线性交叉生成位交换算子,增强明文信息敏感性;运用Logistic方程得到混沌序列,引入抽样加权方法提高图像置乱强度,采用混合蛙跳方法按照族群划分实施信息传输,将混沌序列内的实数从小到大排列,初始混沌抽样后构成的混沌序列用于图像中,显著提升图像置乱强度,完成数字图像置乱。仿真结果表明,上述方法拥有极高的安全性和优秀的加密性能,可以为数字图像在各领域的安全使用提供可靠借鉴。 展开更多
关键词 位交换 混沌优化 数字图像 置乱算法 敏感性增强 混合蛙跳方法
下载PDF
局部阴影下基于GWO-P&O混合算法的光伏最大功率点跟踪
11
作者 赵峰 肖成锐 +1 位作者 陈小强 王英 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期64-71,共8页
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提... 针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。 展开更多
关键词 灰狼优化算法 扰动观察法 局部遮阴 混合优化最大功率点跟踪算法 全局最大功率点
下载PDF
考虑条件风险价值的交直流系统两阶段分布鲁棒低碳经济优化调度 被引量:3
12
作者 曾子龙 李培强 +2 位作者 李勇 钟俊杰 曹一家 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期157-168,共12页
考虑到海上风电出力的随机性以及日益突出的生态环境问题,以含柔性直流输电技术(voltagesource converter high voltage direct current,VSC-HVDC)的交直流系统为研究对象,提出了考虑条件风险价值(conditional valueatrisk,CVaR)的两阶... 考虑到海上风电出力的随机性以及日益突出的生态环境问题,以含柔性直流输电技术(voltagesource converter high voltage direct current,VSC-HVDC)的交直流系统为研究对象,提出了考虑条件风险价值(conditional valueatrisk,CVaR)的两阶段分布鲁棒低碳经济优化模型,构建了基于Kullback-Leibler(KL)散度的概率分布模糊集,同时利用条件风险价值量化了极端场景下的尾部风险,使得模型能够同时考虑概率分布不确定性以及处于最坏概率分布中极端场景下的尾部损失;此外,将阶梯型碳交易机制并入所提分布鲁棒模型中,通过合理利用柔性资源和储能装置,增强系统运行的灵活性,在兼顾运行风险的前提下,降低碳排放量的目标。再者,为了提高计算效率,在列和约束生成算法(column-and-constraint generation method,C&CG)和Multi-cut Benders分解算法的基础上提出了双循环分解算法。最后,在基于改进的IEEE RTS 79测试系统中验证了所提模型及算法的有效性。 展开更多
关键词 低碳 阶梯型碳交易 条件风险价值 分布鲁棒优化 交直流系统 列和约束生成算法
下载PDF
基于梯度搜索与进化机制的多目标混合算法
13
作者 诸才承 唐智礼 +1 位作者 赵鑫 曹凡 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第6期1940-1951,共12页
多目标进化算法(MOEA)因其良好的全局探索能力备受关注,但其在最优值附近的局部搜索能力却相对较弱,且对于具有大规模决策变量的优化问题,MOEA所需的种群数量与迭代次数都十分庞大,优化效率较低。基于梯度的优化算法能够很好地克服这些... 多目标进化算法(MOEA)因其良好的全局探索能力备受关注,但其在最优值附近的局部搜索能力却相对较弱,且对于具有大规模决策变量的优化问题,MOEA所需的种群数量与迭代次数都十分庞大,优化效率较低。基于梯度的优化算法能够很好地克服这些问题,但梯度搜索算法很难应用于多目标问题(MOPs)。在加权平均梯度的基础上引入随机权函数,发展多目标梯度算子,将其与基于参考点的第三代非支配排序遗传算法(NSGA-Ⅲ)结合,发展了多目标梯度优化算法(MOGBA)和多目标混合进化算法(HMOEA)。HMOEA在保留NSGA-Ⅲ良好的全局探索能力的同时,极大地增强了局部搜索能力。数值实验表明:HMOEA对于各种Pareto阵面都具有优秀的捕获能力,与典型的多目标算法相比效率提升了5~10倍。进一步将HMOEA应用于RAE2822翼型的多目标气动优化问题中,得到了理想的Pareto前沿,表明HMOEA是一种高效的优化算法,在气动优化设计中具有潜在的应用价值。 展开更多
关键词 多目标优化 混合算法 进化算法 梯度方法 气动优化
下载PDF
混合动力推进系统与飞机数字化设计现状与展望
14
作者 康乐 冉千禧 +2 位作者 毛军逵 余之圳 韩枫 《推进技术》 EI CAS CSCD 北大核心 2024年第3期84-100,共17页
本文总结了国内外针对混合动力推进系统及飞机发展专门开发的数字化设计工具,归纳了其相应设计方法及特点。综合来看,为了满足混合动力飞机的设计需求,集成高精度电系统和热能管理系统模型,建立针对性的性能评估体系、飞机与发动机设计... 本文总结了国内外针对混合动力推进系统及飞机发展专门开发的数字化设计工具,归纳了其相应设计方法及特点。综合来看,为了满足混合动力飞机的设计需求,集成高精度电系统和热能管理系统模型,建立针对性的性能评估体系、飞机与发动机设计的数据耦合交互、研究设计与安全性分析相统一的建模方法、基于人工智能方法提高优化设计管理能力是目前面向其特点的关键发展方向,并为其后续的实验验证、适航条例制定等工程应用提供重要的技术支撑和设计依据。 展开更多
关键词 混合动力推进系统设计 混合动力飞机设计 多学科优化设计 混合动力评价体系 综述
下载PDF
提升斜坡式重力储能AGC性能的混合储能优化运行方法
15
作者 李震 陈巨龙 +3 位作者 李文林 张裕 杨婕睿 陈思哲 《储能科学与技术》 CAS CSCD 北大核心 2024年第8期2761-2771,共11页
重力储能具有安全性高、成本低、寿命长、存储能量无衰减、建设周期短及环境友好等优势,在长时大容量储能领域有广阔应用前景。然而,重力储能固有的功率离散特性和时滞特性,导致其在参与自动发电控制(AGC)等电网辅助服务时性能不佳。针... 重力储能具有安全性高、成本低、寿命长、存储能量无衰减、建设周期短及环境友好等优势,在长时大容量储能领域有广阔应用前景。然而,重力储能固有的功率离散特性和时滞特性,导致其在参与自动发电控制(AGC)等电网辅助服务时性能不佳。针对该问题,本文提出了一种提升斜坡式重力储能AGC性能的混合储能优化运行方法。首先,分析了斜坡式重力储能的功率离散特性和时滞特性对AGC指令跟踪精度和速度的影响。在此基础上,提出为重力储能配置电池储能,构建混合储能系统,实现输出功率的连续、快速调节。综合考虑电池折旧成本和AGC偏差电量惩罚成本,结合重力储能的安全运行要求和电池储能运行约束,建立了混合储能系统的功率优化模型。根据混合储能系统的工作特点,提出了优化运行方法的流程框架,并在此基础上设计了以AGC响应成本最低为目标的遗传算法。仿真结果表明,本文所提出的优化运行方法可以显著降低AGC响应成本,从而解决斜坡式重力储能系统AGC性能差的问题。 展开更多
关键词 重力储能 混合储能 AGC响应 优化运行方法
下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
16
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
下载PDF
基于改进分析目标级联法的交直流混联配电网分布式优化运行
17
作者 李雪晴 艾欣 王昊洋 《现代电力》 北大核心 2024年第4期689-698,共10页
交直流混联的配电方式是未来配电网的一种重要发展方向,为克服其中各子系统分属不同利益主体而带来的功率信息传递的限制,提出了一种基于改进分析目标级联法的交直流混联配电网分布式优化运行方法。首先,针对交直流混联配电网的直流、... 交直流混联的配电方式是未来配电网的一种重要发展方向,为克服其中各子系统分属不同利益主体而带来的功率信息传递的限制,提出了一种基于改进分析目标级联法的交直流混联配电网分布式优化运行方法。首先,针对交直流混联配电网的直流、换流站和交流区域,分别建立包含自身区域运行优化与区域间交互功率运行优化的模型;其次,采用分布式优化的思想,将交互功率作为共享变量,对模型目标函数进行解耦,并在传统的分析目标级联法中引入一个平衡系数,来解决因惩罚乘数初值选择不当,子系统函数项与惩罚项权重不平衡情况下算法性能不好的问题,在一致性约束下迭代求解分布式模型;最后,通过算例仿真,进行模型的有效性、改进算法性能以及分布式模型通用性的验证。 展开更多
关键词 交直流混联配电网 分布式优化运行 考虑平衡系数的分析目标级联法
下载PDF
Global Optimization‑Based Energy Management Strategy for Series–Parallel Hybrid Electric Vehicles Using Multi‑objective Optimization Algorithm 被引量:2
18
作者 Kegang Zhao Kunyang He +1 位作者 Zhihao Liang Maoyu Mai 《Automotive Innovation》 EI CSCD 2023年第3期492-507,共16页
The study of series–parallel plug-in hybrid electric vehicles(PHEVs)has become a research hotspot in new energy vehicles.The global optimal Pareto solutions of energy management strategy(EMS)play a crucial role in th... The study of series–parallel plug-in hybrid electric vehicles(PHEVs)has become a research hotspot in new energy vehicles.The global optimal Pareto solutions of energy management strategy(EMS)play a crucial role in the development of PHEVs.This paper presents a multi-objective global optimization algorithm for the EMS of PHEVs.The algorithm combines the Radau Pseudospectral Knotting Method(RPKM)and the Nondominated Sorting Genetic Algorithm(NSGA)-II to optimize both energy conservation and battery lifespan under the suburban driving conditions of the New European Driving Cycle.The driving conditions are divided into stages at evident mode switching points and the optimal objectives are computed using RPKM.The RPKM results serve as the fitness values in iteration through the NSGA-II method.The results of the algorithm applied to a PHEV simulation show a 26.74%–53.87%improvement in both objectives after 20 iterations compared to the solutions obtained using only RPKM.The proposed algorithm is evaluated against the weighting dynamic programming and is found to be close to the global optimality,with the added benefits of faster and more uniform solutions. 展开更多
关键词 Plug-in hybrid electric vehicles Energy management strategy Multi-objective optimization Global optimization NSGA-II Radau pseudospectral knotting method
原文传递
基于改进混合樽海鞘群算法的航空发动机模型求解方法
19
作者 沈昂 徐含灵 +1 位作者 胡春艳 谭湘敏 《应用科技》 CAS 2024年第2期31-39,共9页
针对传统智能优化算法在求解航空发动机模型非线性方程组时收敛速度慢、精度低的问题,提出采用樽海鞘群优化算法(salps swarm algorithm,SSA)。为了提升标准SSA求解复杂发动机模型的随机搜索能力,采用了混沌映射、正余弦算法、自适应权... 针对传统智能优化算法在求解航空发动机模型非线性方程组时收敛速度慢、精度低的问题,提出采用樽海鞘群优化算法(salps swarm algorithm,SSA)。为了提升标准SSA求解复杂发动机模型的随机搜索能力,采用了混沌映射、正余弦算法、自适应权重、逐维变异策略对SSA进行改进,并且更进一步调整了算法流程(Process improved SSA),提高算法收敛概率,最终将Process improved SSA与Newton-Raphson算法结合为混合算法,并以适应度值作为算法切换的判断条件以提升混合算法的计算效率。仿真实验验证了Process improved SSA求解航空发动机模型的有效性。仿真结果表明混合算法能够实现全局收敛并提升收敛速度,且能够在模型输入强瞬变仿真时实现快速收敛。 展开更多
关键词 非线性模型 航空发动机 智能优化算法 樽海鞘群算法 混沌映射 正余弦算法 Newton-Raphson算法 混合算法
下载PDF
基于粒子群萤火虫混合算法的计算机辅助配棉
20
作者 陈明亮 章军辉 +2 位作者 丁羽璇 刘禹希 刘俊泽 《棉纺织技术》 CAS 2024年第10期47-53,共7页
为促进棉纺企业精细化管理水平和生产效益的提升,提出一种粒子群萤火虫混合算法的计算机辅助配棉方法。首先,构造混和棉成本最小和混和棉综合质量指标最优的多目标优化函数,建立库存、总重量、原棉种类及质量指标边界等多约束条件,按照... 为促进棉纺企业精细化管理水平和生产效益的提升,提出一种粒子群萤火虫混合算法的计算机辅助配棉方法。首先,构造混和棉成本最小和混和棉综合质量指标最优的多目标优化函数,建立库存、总重量、原棉种类及质量指标边界等多约束条件,按照线性加权方式将多目标模型转化为单目标模型。其次,对粒子群和萤火虫群进行分阶段初始化,设计一种学习因子动态调整和非线性递减惯性权重策略用以提高粒子群算法的综合寻优能力,并采用自适应移动步长更新萤火虫个体位置。最后,使用粒子群、萤火虫及粒子群萤火虫混合算法对配棉模型进行求解。试验结果表明:3种配棉算法均展现出良好的求解可行性,所得混和棉质量指标的综合绝对误差分别为0.0268、0.0240、0.0281,皆处于较低水平;并且粒子群萤火虫混合算法在成本节约方面更具优势,其配棉的总成本相比粒子群算法、萤火虫算法分别降低了1.20%、2.27%。 展开更多
关键词 计算机辅助配棉 混合算法 粒子群优化算法 萤火虫群优化算法 线性加权法
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部