With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ...Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.展开更多
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther...Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.展开更多
In this paper, a novel hybrid method is presented for finding global optimization of an objective function. Based on the interval computation, this hybrid method combines interval deterministic method and stochastic e...In this paper, a novel hybrid method is presented for finding global optimization of an objective function. Based on the interval computation, this hybrid method combines interval deterministic method and stochastic evolution method. It can find global optimization quickly while ensuring the deterministic and stability of the algorithm. When using interval computation, extra width constraints accuracy of interval computation results. In this paper, a splitting method to reduce the extra width is introduced. This method is easy and it can get a more precise interval computation result. When finding the global optimization, it can increase the efficiency of pruning. Several experiments are given to illustrate the advantage of the new hybrid method.展开更多
This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaph...This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaphragm that generates the unsteady flow within the device.The optimization,which is related exclusively to the diaphragm motion,aims at maximizing the net flowrate and minimizing the backflow at the outlet diffuser.All CFD analyses are performed using an in-house cut-cell method,based on the finite volume approach,on a many-processor system.To reduce the optimization turn-around time,two optimization methods,a gradient-free evolutionary algorithm enhanced by surrogate evaluation models and a gradient-based(GB)method are synergistically used.To support the GB optimization,the continuous adjoint method that computes the gradient of the objectives with respect to the design variables has been developed and programmed.Using the hybrid optimization method,the Pareto front of non-dominated solutions,in the two-objective space,is computed.Finally,a couple of optimal solutions selected from the computed Pareto front are re-evaluated by considering uncertainties in the operating conditions;these are quantified using the polynomial chaos expansion method.展开更多
A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, th...A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, the search space of free parameters has been decreased. Then, in order to obtain the global optimal solution effectively and robustly, the simulated annealing and penalty function strategies were used to handle the constraints, and a GA/SQP hybrid optimization algorithm was utilized to solve the parameter optimization problem, in which, a feasible suboptimal solution obtained by GA was submitted as an initial parameter set to SQP for refinement. Comparing to the classical direct method, this novel method has fewer free parameters, needs not initial guesses, and has higher computation precision. An optimal-fuel transfer problem from LEO to GEO was taken as an example to validate the proposed approach. The results of simulation indicate that our approach is available to solve the problem of optimal muhi-revolution transfer between Earth-orbits.展开更多
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term...Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space.展开更多
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d...To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.展开更多
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
考虑到海上风电出力的随机性以及日益突出的生态环境问题,以含柔性直流输电技术(voltagesource converter high voltage direct current,VSC-HVDC)的交直流系统为研究对象,提出了考虑条件风险价值(conditional valueatrisk,CVaR)的两阶...考虑到海上风电出力的随机性以及日益突出的生态环境问题,以含柔性直流输电技术(voltagesource converter high voltage direct current,VSC-HVDC)的交直流系统为研究对象,提出了考虑条件风险价值(conditional valueatrisk,CVaR)的两阶段分布鲁棒低碳经济优化模型,构建了基于Kullback-Leibler(KL)散度的概率分布模糊集,同时利用条件风险价值量化了极端场景下的尾部风险,使得模型能够同时考虑概率分布不确定性以及处于最坏概率分布中极端场景下的尾部损失;此外,将阶梯型碳交易机制并入所提分布鲁棒模型中,通过合理利用柔性资源和储能装置,增强系统运行的灵活性,在兼顾运行风险的前提下,降低碳排放量的目标。再者,为了提高计算效率,在列和约束生成算法(column-and-constraint generation method,C&CG)和Multi-cut Benders分解算法的基础上提出了双循环分解算法。最后,在基于改进的IEEE RTS 79测试系统中验证了所提模型及算法的有效性。展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
The study of series–parallel plug-in hybrid electric vehicles(PHEVs)has become a research hotspot in new energy vehicles.The global optimal Pareto solutions of energy management strategy(EMS)play a crucial role in th...The study of series–parallel plug-in hybrid electric vehicles(PHEVs)has become a research hotspot in new energy vehicles.The global optimal Pareto solutions of energy management strategy(EMS)play a crucial role in the development of PHEVs.This paper presents a multi-objective global optimization algorithm for the EMS of PHEVs.The algorithm combines the Radau Pseudospectral Knotting Method(RPKM)and the Nondominated Sorting Genetic Algorithm(NSGA)-II to optimize both energy conservation and battery lifespan under the suburban driving conditions of the New European Driving Cycle.The driving conditions are divided into stages at evident mode switching points and the optimal objectives are computed using RPKM.The RPKM results serve as the fitness values in iteration through the NSGA-II method.The results of the algorithm applied to a PHEV simulation show a 26.74%–53.87%improvement in both objectives after 20 iterations compared to the solutions obtained using only RPKM.The proposed algorithm is evaluated against the weighting dynamic programming and is found to be close to the global optimality,with the added benefits of faster and more uniform solutions.展开更多
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金supported by the National Natural Science Foundation of China (Grant Nos.40334040 and 40974033)the Promoting Foundation for Advanced Persons of Talent of NCWU
文摘Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.
基金University Putra Malaysia under Putra Grant No.9531200。
文摘Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.
基金Project supported by the Natural High-Technology Research and Development Program of China(Grant No.2009AA012201)the Major Technology Research and Development Program of Shanghai Municipality(Grant No.08DZ501600)the Shanghai Leading Academic Discipline Project(Grant No.J50103)
文摘In this paper, a novel hybrid method is presented for finding global optimization of an objective function. Based on the interval computation, this hybrid method combines interval deterministic method and stochastic evolution method. It can find global optimization quickly while ensuring the deterministic and stability of the algorithm. When using interval computation, extra width constraints accuracy of interval computation results. In this paper, a splitting method to reduce the extra width is introduced. This method is easy and it can get a more precise interval computation result. When finding the global optimization, it can increase the efficiency of pruning. Several experiments are given to illustrate the advantage of the new hybrid method.
文摘This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaphragm that generates the unsteady flow within the device.The optimization,which is related exclusively to the diaphragm motion,aims at maximizing the net flowrate and minimizing the backflow at the outlet diffuser.All CFD analyses are performed using an in-house cut-cell method,based on the finite volume approach,on a many-processor system.To reduce the optimization turn-around time,two optimization methods,a gradient-free evolutionary algorithm enhanced by surrogate evaluation models and a gradient-based(GB)method are synergistically used.To support the GB optimization,the continuous adjoint method that computes the gradient of the objectives with respect to the design variables has been developed and programmed.Using the hybrid optimization method,the Pareto front of non-dominated solutions,in the two-objective space,is computed.Finally,a couple of optimal solutions selected from the computed Pareto front are re-evaluated by considering uncertainties in the operating conditions;these are quantified using the polynomial chaos expansion method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10672044)
文摘A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, the search space of free parameters has been decreased. Then, in order to obtain the global optimal solution effectively and robustly, the simulated annealing and penalty function strategies were used to handle the constraints, and a GA/SQP hybrid optimization algorithm was utilized to solve the parameter optimization problem, in which, a feasible suboptimal solution obtained by GA was submitted as an initial parameter set to SQP for refinement. Comparing to the classical direct method, this novel method has fewer free parameters, needs not initial guesses, and has higher computation precision. An optimal-fuel transfer problem from LEO to GEO was taken as an example to validate the proposed approach. The results of simulation indicate that our approach is available to solve the problem of optimal muhi-revolution transfer between Earth-orbits.
基金This work was supported by the National Natural Science Foundation of China(Grant No.2017YFC0403605 and No.11601419).
文摘Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space.
基金Supported by the National Natural Science Foundation of China(50975141)the Aviation Science Fund(20091652018,2010352005)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX04003031-4)
文摘To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。
文摘考虑到海上风电出力的随机性以及日益突出的生态环境问题,以含柔性直流输电技术(voltagesource converter high voltage direct current,VSC-HVDC)的交直流系统为研究对象,提出了考虑条件风险价值(conditional valueatrisk,CVaR)的两阶段分布鲁棒低碳经济优化模型,构建了基于Kullback-Leibler(KL)散度的概率分布模糊集,同时利用条件风险价值量化了极端场景下的尾部风险,使得模型能够同时考虑概率分布不确定性以及处于最坏概率分布中极端场景下的尾部损失;此外,将阶梯型碳交易机制并入所提分布鲁棒模型中,通过合理利用柔性资源和储能装置,增强系统运行的灵活性,在兼顾运行风险的前提下,降低碳排放量的目标。再者,为了提高计算效率,在列和约束生成算法(column-and-constraint generation method,C&CG)和Multi-cut Benders分解算法的基础上提出了双循环分解算法。最后,在基于改进的IEEE RTS 79测试系统中验证了所提模型及算法的有效性。
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
基金supported by the Natural Science Foundation of Guangdong Province under Grant 2020A1515010773the Key-Area Research and Development Program of Guangdong Province under Grant 2019B090912001.
文摘The study of series–parallel plug-in hybrid electric vehicles(PHEVs)has become a research hotspot in new energy vehicles.The global optimal Pareto solutions of energy management strategy(EMS)play a crucial role in the development of PHEVs.This paper presents a multi-objective global optimization algorithm for the EMS of PHEVs.The algorithm combines the Radau Pseudospectral Knotting Method(RPKM)and the Nondominated Sorting Genetic Algorithm(NSGA)-II to optimize both energy conservation and battery lifespan under the suburban driving conditions of the New European Driving Cycle.The driving conditions are divided into stages at evident mode switching points and the optimal objectives are computed using RPKM.The RPKM results serve as the fitness values in iteration through the NSGA-II method.The results of the algorithm applied to a PHEV simulation show a 26.74%–53.87%improvement in both objectives after 20 iterations compared to the solutions obtained using only RPKM.The proposed algorithm is evaluated against the weighting dynamic programming and is found to be close to the global optimality,with the added benefits of faster and more uniform solutions.